Strong-stuff.ru

Образование Онлайн
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Экваториальная система координат в астрономии видео

Экваториальная система небесных координат в навигации

В отличие от горизонтальной системы небесных координат, где за основную плоскость принят истинный горизонт небесной сферы, в экваториальной системе небесных координат основной плоскостью является плоскость небесного экватора, а полюсами являются полюсы мира. Положение светила в этой системе координат определяется склонением и часовым углом светила.

Общая схема принципа действия экваториальной системы небесных координат

Принцип экваториальной системы небесных координат

Склонением светила δ называется угол, заключенный между плоскостью небесного экватора и направлением на светило из центра небесной сферы. Склонение светила измеряется от 0 до ±90°.
Положительное склонение отсчитывается в направлении к Северному полюсу мира, а отрицательное — к Южному. Склонение Солнца, Луны и планет обычно берется из авиационного астрономического ежегодника для каждого часа гринвичского времени, а навигационных звезд — в таблице экваториальных координат звезд на начало каждого года ввиду изменения его за год на 1—2 градуса. Иногда вместо склонения светила пользуются другой координатой — полярным расстоянием.

Полярным расстоянием Р называется угол в плоскости круга склонения, заключенный между осью мира и направлением на светило из центра небесной сферы. Полярное расстояние отсчитывается от Северного полюса мира к Южному от 0 до 180°. Между полярным расстоянием и склонением светила имеется следующая зависимость:

Р + δ = 90°, откуда Р = 90° — δ; δ = 90° — Р

Светила, находящиеся на одной суточной параллели, имеют одинаковые склонения и одинаковые полярные расстояния. Склонение, или полярное расстояние, определяет положение светила на круге склонения. Положение же самого круга склонения на небесной сфере определяется часовым углом светила.

Часовым углом светила t называется двугранный угол в плоскости небесного экватора, заключенный между плоскостью небесного меридиана и плоскостью круга склонения светила.
Часовой угол отсчитывается от южного направления небесного меридиана по ходу часовой стрелки (к западу) до круга склонения светила от 0 до 360°. Важно знать, что отсчет часового угла светила ведется в направлении суточного вращения небесной сферы.

При решении некоторых задач для удобства часовые углы светил отсчитывают от 0 до 180° к западу и востоку и соответственно обозначают их t3 и tB. В Авиационном астрономическом ежегоднике даны западные часовые углы светил от 0 до 360°, а в расчетных таблицах для Солнца, Луны и планет — от 0 до 180°.

Важное значение имеет зависимость между часовым углом светила и долготой места наблюдателя. Выше указывалось, что часовой угол светила принято отсчитывать к западу от небесного меридиана. Так как плоскость небесного меридиана совпадает с географическим меридианом наблюдателя, то в один и тот же момент времени часовые углы одного и того же светила для наблюдателей, находящихся на разных меридианах, будут различны.
Очевидно, что в один и тот же момент времени разность местных часовых углов светила равна разности долгот наблюдателей t2-t1=λ2-λ1. Если принять в данном соотношении λ1=0, то t1 = tгр. Принимая λ1=λ и t2=t, получаем t=tгр+-λ b 3.

Как видно из полученной формулы, местный часовой угол светила отличается от гринвичского на значение долготы наблюдателя. В практике часто вместо часового угла светила пользуются другой координатой — прямым восхождением светила.

Прямым восхождением светила α называется угол, заключенный между плоскостью круга склонения точки весеннего равноденствия (начального круга склонения) и плоскостью круга склонения светила.

Точкой весеннего равноденствия называется точка пересечения плоскости небесного экватора центром Солнца (21 марта) при его видимом годовом движении по небесной сфере. Эту точку принято обозначать символом созвездия Овен, в котором она находилась в эпоху зарождения астрономии.

Прямое восхождение светила отсчитывается в плоскости небесного экватора от точки весеннего равноденствия против хода часовой стрелки (к востоку) до круга склонения светила от 0 до 360°. Прямое восхождение светила и его часовой угол можно измерять не только углом, но и дугой небесного экватора, а склонение и полярное расстояние светила — дугой круга склонения.

Читать еще:  Инглиш шоу видео

Особенности экваториальной системы небесных координат

В авиационной астрономии экваториальная система небесных координат дополнительно подразделяется на две системы.

В первой экваториальной системе положение светила на небесной сфере определяется склонением и часовым углом, а во второй — прямым восхождением и склонением светила. Первая экваториальная система берется в основу при разработке и создании астрономических компасов, а также при составлении расчетных таблиц. Вторую экваториальную систему используют для составления звездных карт и таблиц экваториальных координат звезд.

Экваториальная система небесных координат является более практичной по сравнению с горизонтальной. Она имеет большое практическое значение в авиационной астрономии. С этой системой связано измерение времени и определение места самолета, т. е. решение главных вопросов практической авиационной астрономии.

Основным ее достоинством является то, что экваториальные координаты светил не зависят от места наблюдателя на земной поверхности, за исключением местного часового угла. Часовой угол светила зависит не только от долготы места наблюдателя, но и от времени наблюдения. Он непрерывно изменяется пропорционально времени, и это позволяет учитывать в астрокомпасах при помощи часового механизма его изменение за счет вращения Земли.

Ниже приведены примеры графического изображения положения светил на небесной сфере по заданным экваториальным координатам.

  • Пример 1. Западный часовой угол светила t3 = 230°; склонение светила δ = +60°.
  • Пример 2. Прямое восхождение светила α =300°; склонение светила δ = -60°.

Иллюстрация принципа определения координат объекта с помощью экваториальной системы небесных координат (к примерам выше)

источник: по книге “Авиационная астрономия”

Пересчет экваториальных координат звезд в эклиптические

При тестировании программы пересчета экваториальных координат небесного объекта в эклиптические установлено, что при заполненной данными расчетной таблице появляется возможность пересчитывать время из представления в часах, минутах и секундах в десятичные доли часа и наоборот, а угловые величины пересчитывать из дробно-десятичного формата в градусах не только в градусы, минуты, секунды, но и в радианы.

В настоящее время в астрономии основной всемирно признанной астрометрической системой описания положения небесных объектов является вторая экваториальная система координат [1] .

В рамках экваториальной системы записи координат эфемериды [2] небесных светил принято представлять в форматах:

угловое расстояние от точки весеннего равноденствия до точки пересечения меридианной линии светила с линией экватора, называемое прямое восхождение α — чч мм сс,сс;

и угловое расстояние вдоль меридиана от точки его пересечения с линией экватора до светила, именуемое как склонение δ — (°) (′) (″,″).

Именно такой формат принят за основной для распознавания в позициях строчного ввода координат небесных объектов (Табл.1). В окна этих позиций вы можете внести скопированные из электронных таблиц координаты небесных объектов.
Во многих случаях будет распознана даже единая строка из двух значений координат, например, такая: 03 ч 24м 19,35c +49° 51′ 40,5″, главное, чтобы присутствовали правильные обозначения водимых угловых координат. Помимо обозначений ч — часы, м — минуты, с — секунды, программа не будет «ругаться» и на представление данных с обозначениями h — hours, m — minutes, s — seconds.

Эклиптическая система небесных координат [3] является древнейшей системой регистрации положения небесных объектов со времен Гиппарха до Байера. Сейчас эта система координат ипользуется для расчетов движения планет, а так же для разбиения небесной сферы на зодиакальные сектора. В наше время принят следующий формат записи эклиптических координат:

Читать еще:  Градиент кисточкой видео

долгота λ — (°) (′) (″,″); широта β — (°) (′) (″,″).

Используемая здесь программа позволяет проводить расчет «на лету», реагируя на обновление данных, но пока не введены все необходимые значения .
Для начала расчета нужно ввести или обновить обе пары значений координат звездного объекта. Если необходимое значение координат 0,0000°, то лучше сначала в соответствующую позицию ввести ненулевое значение, а затем, после того как включился зеленый свет для расчетов снова установить 0 (можно просто добавить после нуля точку или запятую, главное, чтобы программа распознала, что все координаты введены осознанно).

Таблица 1: Пересчет координат небесного объекта из экваториальной системы отсчета в эклиптическую

δ — склонение

β — широта

Сближение с Солнцем

Что-то пошло не так. Прямое восхождение не может быть больше 24 часов, минуты и секунды больше 60, а склонение по абсолютной величине не должно быть больше 90°

Design by Sergey Ov for abc2home.ru

Для удобства переноса данных в другие источники предлагаются следующие форматы их вывода:

Объект: Регул
Созвездие: Leo, Лев (Leo)

Экваториальные координаты:
Стандарт — (10ч 08м 22с; 11° 58′ 12″);
Доли часа — (10,13953 ч; 11,97000° );
Градусы — (152,09300°; 11,97000°) или (152.09300, 11.97000)°;
Радианы — (2,65452 рад; 0,20892 рад) или (2.65452, 0.20892) rad

Эклиптические координаты:
Стандарт — (149° 49′ 42″; 0° 28′ 05″);
Градусы — (149,82820°; 0,46810°) или (149.82820, 0.46810)°;
Радианы — (2,61500 рад; 0,00817 рад) или (2.61500, 0.00817) rad

После того как будут введены координаты обоих объектов (планет, звезд) должен погаснуть оранжевый запрос «Данные?» или «?», включится зеленый цвет и автоматически начнется расчет углового расстояния, если это не произошло, то кликните по зеленому полю «Расчет» или «ОК» .

Расчет углового расстояния между двумя астрономическими объектами, положение которых определено во второй экваториальной системе координат

Рис. 1. Сферический треугольник

В основу построения всех уравнений сферической тригонометрии заложено замечательное свойство дуги окружности — радианная мера угла дуги окружности численно равна отношению длины дуги к радиусу этой окружности, например (Рис.1):

Таким образом, все дальнейшие операции проводятся только с угловыми величинами.
В основу выражений зависимостей угловых величин в сферической тригонометрии, так же как и в обычной заложены теоремы синусов и косинусов.

Сферическая теорема косинусов

cos(a) = cos(b)*cos(c)+ sin(b)*sin(c)*cos(A),
cos(b) = cos(c)*cos(a)+ sin(c)*sin(a)*cos(B),
cos(c) = cos(a)*cos(b)+ sin(a)*sin(b)*cos(C).

Сферическая теорема синусов

Во второй экваториальной системе координат положение объектов определяется двумя угловыми параметрами, называемыми прямое восхождение α и склонение δ, в эклиптической системе координат аналогичные угловые величины, но привязанные к эклиптике — это долгота λ и широта β (Рис.2).

Рис. 2. Небесная сфера, угловые экваториальные координаты и эклиптические координаты небесного светила (объекта)

Как видно из рисунка, α и δ — прямое восхождение и склонение, характеризующие положение объекта на небесной сфере относительно экватора, соответственно, λ и β долгота и широта, определяющие положение объекта относительно эклиптики.
Склонение определяется величиной угла от линии небесного экватора до объекта в плоскости перпендикулярной экватору.
Прямое восхождение определяется величиной угла между точкой весеннего равноденствия и точкой отсчета склонения.
Важно запомнить, что прямое восхождение отсчитывается от точки весеннего равноденствия в направлении противоположном движению часовой стрелки (в точке весеннего равноденствия Солнце вступает в знак Овна) и его величина выражается не градусах, а в часах. На нашем рисунке величина α составляет примерно 2 часа, а δ чуть-чуть превышает 45°.

Формула расчета углового расстояния выводится с помощью тригонометрических преобразований угловых параметров треугольников соединяющих точки, соответствующие положению объектов на небесной сфере, центр этой сферы и точки отсчета склонений объектов:

Читать еще:  Как найти по видео в интернете

sin(β) = cos(ε)*sin(δ) + sin(ε)*sin(α)*cos(δ),
sin(λ)*cos(β) = sin(ε)*sin(δ) + cos(ε)*sin(α)*cos(δ),
cos(λ)*cos(β) = cos(α)*cos(δ),

где ε = 23,439281° представляет собой угол наклона земной оси к эклиптике, то есть угол, который образует плоскость земного экватора с плоскостью земной орбиты при обращении Земли вокруг Солнца.

P.S. На этой странице используется Бета версия программы расчета эклиптических координат точки небесной сферы по заданным экваториальным, об обнаруженных недочетах, а так же возможных пожеланиях просьба сообщить на форум сайта (окно для входа на форум находится в нижней части страницы).

1. Эфемеридами называются рассчитанные наперед угловые координаты небесных тел. если подходить к современному понятию строго, то ЭФЕМЕР́ИДЫ (астрономический термин), координаты небесных светил и др. переменные астрономические величины, вычисленные для ряда последовательных моментов времени и сведенные в таблицы.

2. Прямое восхождение и склонение — названия координат во второй экваториальной системе отсчета.
Для определения положения светила s проводят через небесный экватор и Р (полюс мира) большой круг, называемый часовым кругом, или кругом склонений. Дуга этого круга от экватора до светила есть первая координата — склонение светила d (δ). Склонение отсчитывается от экватора в обе стороны от 0° до 90°, причём для светил Южном полушария d (δ) принимается отрицательным.
. Восхождение светила a (α) — дуга α1 небесного экватора (Рис.1), отсчитываемая от точки весеннего равноденствия в направлении, обратном вращению небесной сферы, до круга склонений данного светила. Она измеряет сферический угол между кругами склонений, проходящими через точку равноденствия и данное светило. Обычно ее выражается в часах, минутах и секундах времени и может иметь любое значение от 0ч до 24ч

2. Долгота и широта — названия координат в эклиптической системе отсчета.
В эклиптической системе основным кругом служит эклиптика, полюсом — полюс эклиптики EPN. Для определения положения светила s проводят через него и точку EPN большой круг, называемый кругом широты данного светила. Его дуга от эклиптики до светила называется эклиптической, небесной или астрономической, широтой b (β), является первой координатой. Отсчитывается широта b (β) от эклиптики в направлении к её Северному и Южному полюсам; в последнем случае её считают отрицательной. Вторая координата — эклиптическая, небесная или астрономическая, долгота l (λ) — дуга от /точки весеннего равноденствия/ эклиптики до круга широты данного светила, отсчитываемая в направлении годичного движения Солнца. Она может иметь любое значение от 0 до 360.

4. Астеризм — группа звезд, образующая характерный рисунок и имеющая самостоятельное название. Астеризм может быть как частью созвездия, например, Трон, так и объединять несколько созвездий, например, Зимний Треугольник.

Большой российский энциклопедический словарь. 2012

Астрономия. Системы координат: I и II экваториальные и эклиптическая системы координат

Для просмотра онлайн кликните на видео ⤵

КООРДИНАТЫ ● НЕБЕСНЫЕ КООРДИНАТЫ ● ЭКВАТОРИАЛЬНАЯ СИСТЕМА КООРДИНАТ Подробнее

КООРДИНАТЫ ● НЕБЕСНЫЕ КООРДИНАТЫ ● ГОРИЗОНТАЛЬНАЯ СИСТЕМА КООРДИНАТ Подробнее

Экваториальная система координат Подробнее

КООРДИНАТЫ ● НЕБЕСНЫЕ КООРДИНАТЫ ● ЭКЛИПТИЧЕСКАЯ СИСТЕМА КООРДИНАТ Подробнее

2 Небесная сфера. Системы координат. Часовые углы. Подробнее

8-2 Координаты на плоскости, в пространстве и на сфере Подробнее

1. Построение небесной сферы .mp4 Подробнее

КООРДИНАТЫ ● НЕБЕСНЫЕ КООРДИНАТЫ ● ГАЛАКТИЧЕСКАЯ СИСТЕМА КООРДИНАТ Подробнее

Экваториальные координаты против эклиптических или дхруваака координаты Подробнее

Астрономия. Системы координат: Географическая и горизонтальная системы координат Подробнее

Горизонтальная система координат. Навигация на небесной сфере Подробнее

КАК ПРАВИЛЬНО ВЫБРАТЬ ТЕЛЕСКОП? ● ТЕЛЕСКОП ДЛЯ НАЧИНАЮЩИХ Подробнее

Как ориентироваться по звездам и выучить созвездия. Астрономия для начинающих Подробнее

БОЛЬШАЯ МЕДВЕДИЦА ● ВСЁ О БОЛЬШОЙ МЕДВЕДИЦЕ Подробнее

Определение широты и долготы Подробнее

АСТРОНОМИЯ НА ПАЛЬЦАХ: ПОДВИЖНАЯ КАРТА ЗВЕЗДНОГО НЕБА Подробнее

Суточное вращение звёздного неба на средних широтах Подробнее

Ссылка на основную публикацию
Adblock
detector