Strong-stuff.ru

Образование Онлайн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теоретическая механика курс

Теоретическая механика для инженеров и исследователей

  • 9 недель

3 зачётных единицы

для зачета в своем вузе

Лекции представляют собой строгое, целостное и компактное изложение основных задач и методов теоретической механики.

По онлайн-курсу возможно получение сертификата.

О курсе

В курсе рассматриваются: кинематика точки и твёрдого тела (причём с разных точек зрения предлагается рассмотреть проблему ориентации твердого тела), классические задачи динамики механических систем и динамики твердого тела, элементы небесной механики, движение систем переменного состава, теория удара, дифференциальные уравнения аналитической динамики.

В курсе представлены все традиционные разделы теоретической механики, однако особое внимание уделено рассмотрению наиболее содержательных и ценных для теории и приложений разделов динамики и методов аналитической механики; статика изучается как раздел динамики, а в разделе кинематики подробно вводятся необходимые для раздела динамики понятия и математический аппарат.

Информационные ресурсы

Гантмахер Ф.Р. Лекции по аналитической механике. – 3-е изд. – М.: Физматлит, 2001.
Журавлёв В.Ф. Основы теоретической механики. – 2-е изд. – М.: Физматлит, 2001; 3-е изд. – М.: Физматлит, 2008.
Маркеев А.П. Теоретическая механика. – Москва – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2007.

Требования

Курс рассчитан на студентов владеющих аппаратом аналитической геометрии и линейной алгебры в объеме программы первого курса технического вуза.

Программа курса

1. Кинематика точки
1.1. Задачи кинематики. Декартова система координат. Разложение вектора по ортонормированному базису. Радиус-вектор и координаты точки. Скорость и ускорение точки. Траектория движения.
1.2. Естественный трёхгранник. Разложение скорости и ускорения в осях естественного трехгранника (теорема Гюйгенса).
1.3. Криволинейные координаты точки, примеры: полярная, цилиндрическая и сферическая системы координат. Составляющие скорости и проекции ускорения на оси криволинейной системы координат.

2. Способы задания ориентации твердого тела
2.1. Твердое тело. Неподвижная и связанная с телом системы координат.
2.2. Ортогональные матрицы поворота и их свойства. Теорема Эйлера о конечном повороте.
2.3. Активная и пассивная точки зрения на ортогональное преобразование. Сложение поворотов.
2.4. Углы конечного вращения: углы Эйлера и «самолетные» углы. Выражение ортогональной матрицы через углы конечного вращения.

3. Пространственное движение твердого тела
3.1. Поступательное и вращательное движения твердого тела. Угловая скорость и угловое ускорение.
3.2. Распределение скоростей (формула Эйлера) и ускорений (формула Ривальса) точек твердого тела.
3.3. Кинематические инварианты. Кинематический винт. Мгновенная винтовая ось.

4. Плоскопараллельное движение
4.1. Понятие плоскопараллельного движения тела. Угловая скорость и угловое ускорение в случае плоскопараллельного движения. Мгновенный центр скоростей.

5. Сложное движение точки и твердого тела
5.1. Неподвижная и движущаяся системы координат. Абсолютное, относительное и переносное движения точки.
5.2. Теорема о сложении скоростей при сложном движении точки, относительная и переносная скорости точки. Теорема Кориолиса о сложении ускорений при сложном движении точки, относительное, переносное и кориолисово ускорения точки.
5.3. Абсолютные, относительные и переносные угловая скорость и угловое ускорение тела.

6. Движение твердого тела с неподвижной точкой (кватернионное изложение)
6.1. Понятие о комплексных и гиперкомплексных числах. Алгебра кватернионов. Кватернионное произведение. Сопряженный и обратный кватернион, норма и модуль.
6.2. Тригонометрическое представление единичного кватерниона. Кватернионный способ задания поворота тела. Теорема Эйлера о конечном повороте.
6.3. Связь между компонентами кватерниона в разных базисах. Сложение поворотов. Параметры Родрига-Гамильтона.

7. Экзаменационная работа

8. Основные понятия динамики.
8.1 Импульс, момент импульса (кинетический момент), кинетическая энергия.
8.2 Мощность сил, работа сил, потенциальная и полная энергия.
8.3 Центр масс (центр инерции) системы. Момент инерции системы относительно оси.
8.4 Моменты инерции относительно параллельных осей; теорема Гюйгенса–Штейнера.
8.5 Тензор и эллипсоид инерции. Главные оси инерции. Свойства осевых моментов инерции.
8.6 Вычисление момента импульса и кинетической энергии тела с помощью тензора инерции.

9. Основные теоремы динамики в инерциальных и неинерциальных системах отсчёта.
9.1 Теорема об изменении импульса системы в инерциальной системе отсчета. Теорема о движении центра масс.
9.2 Теорема об изменении момента импульса системы в инерциальной системе отсчета.
9.3 Теорема об изменении кинетической энергии системы в инерциальной системе отсчета.
9.4 Потенциальные, гироскопические и диссипативные силы.
9.5 Основные теоремы динамики в неинерциальных системах отсчета .

Читать еще:  Курсы для юристов в москве бесплатно

10. Движение твёрдого тела с неподвижной точкой по инерции.
10.1 Динамические уравнения Эйлера.
10.2 Случай Эйлера, первые интегралы динамических уравнений; перманентные вращения.
10.3 Интерпретации Пуансо и Маккулага.
10.4 Регулярная прецессия в случае динамической симметрии тела.

11. Движение тяжёлого твёрдого тела с неподвижной точкой.
11.1 Общая постановка задачи о движении тяжелого твердого тела вокруг.
неподвижной точки. Динамические уравнения Эйлера и их первые интегралы.
11.2 Качественный анализ движения твердого тела в случае Лагранжа.
11.3 Вынужденная регулярная прецессия динамически симметричного твердого тела.
11.4 Основная формула гироскопии.
11.5 Понятие об элементарной теории гироскопов.

12. Динамика точки в центральном поле.
12.1 Уравнение Бине.
12.2 Уравнение орбиты. Законы Кеплера.
12.3 Задача рассеяния.
12.4 Задача двух тел. Уравнения движения. Интеграл площадей, интеграл энергии, интеграл Лапласа.

13. Динамика систем переменного состава.
13.1 Основные понятия и теоремы об изменении основных динамических величин в системах переменного состава.
13.2 Движение материальной точки переменной массы.
13.3 Уравнения движения тела переменного состава.

14. Теория импульсивных движений.
14.1 Основные понятия и аксиомы теории импульсивных движений.
14.2 Теоремы об изменении основных динамических величин при импульсивном движении.
14.3 Импульсивное движение твёрдого тела.
14.4 Соударение двух твёрдых тел.
14.5 Теоремы Карно.

15. Контрольная работа

Результаты обучения

В результате освоения дисциплины обучающийся должен:

  • Знать:
    • основные понятия и теоремы механики и вытекающие из них методы изучения движения механических систем;
  • Уметь:
    • корректно формулировать задачи в терминах теоретической механики;
    • разрабатывать механико-математические модели, адекватно отражающие основные свойства рассматриваемых явлений;
    • применять полученные знания для решения соответствующих конкретных задач;
  • Владеть:
    • навыками решения классических задач теоретической механики и математики;
    • навыками исследования задач механики и построения механико-математических моделей, адекватно описывающих разнообразные механические явления;
    • навыками практического использования методов и принципов теоретической механики при решении задач: силового расчета, определения кинематических характеристик тел при различных способах задания движения, определения закона движения материальных тел и механических систем под действием сил;
    • навыками самостоятельно овладевать новой информацией в процессе производственной и научной деятельности, используя современные образовательные и информационные технологии;

Теоретическая механика курс

Несмотря на наличие большого количества хороших учебников по курсу теоретической механики студенты испытывают недостаток в учебной литературе по данному вопросу.

Указанные курсы, отражая стремительное развитие науки и практики, от издания к изданию увеличивали свой объем, одновременно учебные планы насыщались специальными дисциплинами, а объем лекционного курса по теоретической механике сокращался, и его содержание становилось менее полным.

В настоящее время разрыв между объемом и содержанием учебной литературы с одной стороны, и лекционных курсов с другой достиг такой величины, что использование студентами солидных учебников на базе укороченных лекций стало почти невозможно.

В этих условиях наиболее целесообразно издание и использование учебной литературы, отражающей только программные вопросы. Содержание настоящего курса лекций соответствует полной программе курса теоретической механики для студентов очной и заочной форм обучения инженерных специальностей. По нему студенты могут проверить, исправить и дополнить свои лекционные записи. В процессе такой работы у студента появится основа для проработки лекционного материала и дополнительных вопросов по более полным учебникам и научной литературе.

Для изучения курса необходимо иметь соответствующую математическую подготовку. Во всех разделах курса, начиная со статики, широко используется векторная алгебра. Необходимо уметь вычислять проекции векторов на координатные оси, находить геометрически (построением векторного треугольника или многоугольника) и аналити­чески (по проекциям на координатные оси) сумму векторов, вычислять скалярное и векторное произведения двух векторов и знать свойства этих произведений, а в кинематике и динамике — дифференцировать векторы.. Надо также уметь свободно пользоваться системой прямо­угольных декартовых координат на плоскости и в пространстве, знать, что такое единичные векторы (орты) этих осей и как выражаются составляющие вектора по координатным осям с помощью ортов.

Читать еще:  Курсы по юриспруденции для начинающих бесплатно

Для изучения кинематики надо совершенно свободно уметь дифференцировать функции одного переменного, строить графики этих функ­ций, быть знакомым с понятиями о естественном трехграннике, кривизне кривой и радиусе кривизны, знать основы теории кривых 2-го порядка, изучаемой в аналитической геометрии.

Для изучения динамики надо уметь находить интегралы (неопре­деленные и определенные) от простейших функций, вычислять частные производные и полный дифференциал функций нескольких переменных, а также уметь интегрировать дифференциальные уравнения 1-го порядка с разделяющимися переменными и линейные дифференциальные урав­нения 2-го порядка (однородные и неоднородные) с постоянными коэффициентами.

При изучении материала курса нужно, прежде всего, уяснить существо каждого излагаемого там вопроса. Главное — это понять изложенное в учебнике, а не «заучить».

Сначала следует прочитать весь материал темы, особенно не задер­живаясь на том, что показалось не совсем понятным; часто это становит­ся понятным из последующего. Затем надо вернуться к местам, вызвав­шим затруднения, и внимательно разобраться в том, что было неясно. Особое внимание при повторном чтении обратите на формулировки соответствующих определений, теорем и т. п. (они обычно бывают набраны в учебнике курсивом или разрядкой); в точных формулировках, как правило, бывает существенно каждое слово и очень полезно понять, почему данное положение сформулировано именно так. Однако не сле­дует стараться заучивать формулировки; важно понять их смысл и уметь изложить результат своими словами.

Необходимо также понять ход всех доказательств (в механике они обычно не сложные) и разобраться в их деталях. Доказательства надо уметь воспроизводить самостоятельно, что нетрудно сделать, поняв идею доказательства; пытаться просто их «заучивать» не следует, никакой пользы это не принесет.

При изучении курса особое внимание следует уделить приобретению навыков решения задач. Для этого, изучив материал данной темы, надо сначала обязательно разобраться в решениях соответствующих задач, которые приводятся в курсе лекций, обратив особое внимание на методические указания по их решению. Затем постарайтесь решить самостоятельно несколько аналогичных задач.

Закончив изучение темы, полезно составить краткий конспект. После изучения темы, нужно проверить, можете ли вы дать ответ на все вопросы программы курса по этой теме (осуществить самопроверку). Поскольку все вопросы, которые должны быть изучены и усвоены, в программе перечислены достаточно подробно, дополнительные вопросы для самопроверки приводятся не в полном объеме. Однако очень полезно составить перечень таких вопросов самостоятельно (в отдельной тетради) следую­щим образом.

Начав изучение очередной темы программы, выписать сначала в тетради последовательно все перечисленные в программе вопросы этой темы, оставив справа широкую колонку (поле). При этом если, на­пример, в программе сказано «Условия равновесия пространственной и плоской систем сходящихся сил», то следует записать отдельно вопросы «Условия равновесия пространственной системы сходящихся сил» и «Условия равновесия плоской системы сходящихся сил» и т. д.

Затем, по мере изучения материала темы, следует в правой колонке указать страницу учебника, на которой излагается соответствующий вопрос, а также номер формулы или уравнения (уравнений), которые выражают ответ на вопрос математически. В ре­зультате в данной тетради будет полный перечень вопросов для самопроверки, который можно использовать и при подготовке к экзамену. Кроме того, ответив на вопрос или написав соответствующую формулу (уравнение), вы можете по учебнику быстро проверить, правильно ли это сделано, если в правильности своего ответа сомневаетесь. Наконец, по тетради с такими вопросами вы можете установить, весь ли материал, предусмотренный программой, вами изучен.

Решение задач по теоретической механике

Избранные разделы по теоретической механике

Примеры решения задач по теоретической механике

Статика

Найти графическим способом реакции опор балки AB , на которую действует сила P , приложенная в точке C .
Дано: P = 55 kH , AB = 10 м , AC = 7 м , BC = 3 м .

Читать еще:  Курс алгебры за 7 класс

Кинематика

Кинематика материальной точки

Определение скорости и ускорения точки по заданным уравнениям ее движения

Дано: Уравнения движения точки: x = 12 sin( πt/ 6) , см; y = 6 cos 2 ( πt/ 6) , см.

Установить вид ее траектории и для момента времени t = 1 с найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Поступательное и вращательное движение твердого тела

Дано:
t = 2 с; r1 = 2 см, R1 = 4 см; r2 = 6 см, R2 = 8 см; r3 = 12 см, R3 = 16 см; s5 = t 3 – 6t (см).

Определить в момент времени t = 2 скорости точек A, C; угловое ускорение колеса 3; ускорение точки B и ускорение рейки 4.

Кинематический анализ плоского механизма

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна E. Стержни соединены с помощью цилиндрических шарниров. Точка D расположена в середине стержня AB.
Дано: ω1, ε1.
Найти: скорости VA, VB, VD и VE; угловые скорости ω2, ω3 и ω4; ускорение aB; угловое ускорение εAB звена AB; положения мгновенных центров скоростей P2 и P3 звеньев 2 и 3 механизма.

Определение абсолютной скорости и абсолютного ускорения точки

Прямоугольная пластина вращается вокруг неподвижной оси по закону φ = 6 t 2 – 3 t 3 . Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO 1 лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой BD движется точка M . Задан закон ее относительного движения, т. е. зависимость s = AM = 40( t – 2 t 3 ) – 40 ( s — в сантиметрах, t — в секундах). Расстояние b = 20 см . На рисунке точка M показана в положении, при котором s = AM > 0 (при s 2 , вектор R направлен противоположно скорости V груза).

Груз, закончив движение на участке AB, в точке B трубы, не изменяя значения модуля своей скорости, переходит на участок BC. На участке BC на груз действует переменная сила F, проекция Fx которой на ось x задана.

Считая груз материальной точкой, найти закон его движения на участке BC, т.е. x = f(t), где x = BD. Трением груза о трубу пренебречь.


Скачать решение задачи

Теорема об изменении кинетической энергии механической системы

Механическая система состоит из грузов 1 и 2, цилиндрического катка 3, двухступенчатых шкивов 4 и 5. Тела системы соединены нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям. Каток (сплошной однородный цилиндр) катится по опорной плоскости без скольжения. Радиусы ступеней шкивов 4 и 5 равны соответственно R4 = 0,3 м, r4 = 0,1 м, R5 = 0,2 м, r5 = 0,1 м. Массу каждого шкива считать равномерно распределенной по его внешнему ободу. Опорные плоскости грузов 1 и 2 шероховатые, коэффициент трения скольжения для каждого груза f = 0.1.

Под действием силы F, модуль которой изменяется по закону F = F(s), где s — перемещение точки ее приложения, система приходит в движение из состояния покоя. При движении системы на шкив 5 действуют силы сопротивления, момент которых относительно оси вращения постоянный и равен M5.

Определить значение угловой скорости шкива 4 в тот момент времени, когда перемещение s точки приложения силы F станет равным s1 = 1,2 м.

Скачать решение задачи

Применение общего уравнения динамики к исследованию движения механической системы

Для механической системы определить линейное ускорение a1. Считать, что у блоков и катков массы распределены по наружному радиусу. Тросы и ремни считать невесомыми и нерастяжимыми; проскальзывание отсутствует. Трением качения и трением скольжения пренебречь.

Скачать решение задачи

Применение принципа Даламбера к определению реакций опор вращающегося тела

Вертикальный вал AK, вращающийся равномерно с угловой скоростью ω = 10 с -1 , закреплен подпятником в точке A и цилиндрическим подшипником в точке D.

К валу жестко прикреплены невесомый стержень 1 длиной l1 = 0,3 м, на свободном конце которого расположен груз массой m1 = 4 кг, и однородный стержень 2 длиной l2 = 0,6 м, имеющий массу m2 = 8 кг. Оба стержня лежат в одной вертикальной плоскости. Точки прикрепления стержней к валу, а также углы α и β указаны в таблице. Размеры AB=BD=DE=EK=b, где b = 0,4 м. Груз принять за материальную точку.

Пренебрегая массой вала, определить реакции подпятника и подшипника.

Ссылка на основную публикацию
Adblock
detector