Strong-stuff.ru

Образование Онлайн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анализ данных книга

12 книг по Data Science для новичков и продвинутых

Редактор блога Нетологии Юлия Чернова сделала подборку книг о Data Science на английском языке, которые помогут новичкам разобраться в основах, а продвинутым — прокачать знания и навыки.

«Numsense! Data Science for the Layman», Annalyn Ng, Kenneth Soo

Для кого. Для новичков в сфере Data Science, которые знают английский.

О чем. Автор описывает регрессивный анализ, нейронные сети А/В тесты, деревья решений и другие базовые понятия.

Польза. Поможет вникнуть в основы DS без математической сложности, разобраться в теме при помощи наглядных иллюстраций.

«Machine Learning», Tom Mitchell

Для кого. Для новичков, которые не знают ничего об искусственном интеллекте и статистике. Для владеющих английским на продвинутом уровне.

О чем. Описания популярных алгоритмов — байесовского обучения, обучения с подкреплением, нейронных сетей с подробными примерами.

Польза. Лучший вводный материал для тех кто изучает элементарные понятия машинного обучения. Поможет разобраться в теме и понять основы перед дальнейшим углубленным изучением.

«Blockchain Basics: A Non-Technical Introduction in 25 Steps», Daniel Drescher

Для кого. Для новичков, которые не хотят разбираться с терминами из программирования и знают английский.

О чем. Книга о технологии блокчейн на примерах криптовалют Bitcoin, Ethereum и Litecoin.

Польза. Доступно объясняет, что такое блокчейн, без сложных технических терминов, с примерами и иллюстрациями.

«Microsoft Excel Data Analysis and Business Modeling», Wayne Winston

Для кого. Для тех, кто изучает бизнес-аналитику, и знает английский на уровне Upper-Intermediate и выше.

О чем. Книга о функциях Excel для бизнеса и сложных вопросах бизнес-аналитики. С тематическими исследованиями финансовой составляющей бизнеса, реальными примерами.

Польза. Учит работать со сложными функциями Excel: сводными таблицами, описательной статистикой, Offset, Indirect, Excel Solver и макросами для автоматизации повторяющихся задач в анализе данных.

«AI and Analytics: Accelerating Business Decisions», Sameer Dhanrajani

Для кого. Для руководителей и начинающих предпринимателей в области ИИ и Data Science

Читать еще:  Книги по хакингу

О чем. Автор рассказывает о комплексных стратегиях и методологии в аналитике. Охватывает большинство популярных отраслей бизнеса — страхование, розничную. торговлю, банковское дело.

Польза. Помогает понять основы бизнес-аналитики. Предлагает бизнес-идеи развития компаний с использованием блокчейна, криптовалют, чат-ботов и других популярных технологий.

«Doing Data Science», Кэти О’Нил, Рэйчел Шатт

Для кого. Для новичков, которые уже освоили базовые понятия DS, и переходят к изучению технической литературы.

О чем. Издание посвящено углубленному изучению фильтрации спама, регрессионных моделей, рекомендательных машин, введению в Big Data.

Польза. Помогает систематизировать знания об основах Data Science.

«Data Science at the Command Line», Жерон Янссенс

Для кого. Для тех, кто изучает основы программирования и интересуется анализом данных.

О чем. Книга содержит информацию об анализе данных и командной строки.

Польза. Расширит ваши возможности в области анализа данных. Ознакомит с основами программирования и поможет проще получать, преобразовывать и анализировать данные.

«Python for Data Analysis» , Уэс МакКинни

Для кого. Для тех, кто хочет изучить Python — основной язык программирования в сфере анализа данных.

О чем. Книга на 400 страниц со всеми подробностями о языке программирования, которые пригодятся будущим специалистам по Data Science.

Польза. Поможет изучить язык программирования с нуля или начального уровня, научит применять его в анализе данных.

«Python Machine Learning», Sebastian Raschka

Для кого. Для тех, кто хочет глубже изучить техническую сторону работы с предсказательной аналитикой в языке программирования. Для инженеров с любым уровнем знаний в сфере машинного обучения.

О чем. Книга о возможностях Python в аналитических моделях, улучшении веб-приложений, открытии скрытых паттернов и структуры в данных с помощью кластеризации.

Польза. Научит применять регрессионный анализ, эффективно проводить предварительную обработку данных, применять анализ социальных сетей в определении настроений аудитории.

«Storytelling with Data: A Data Visualization Guide for Business Professionals», Cole Nussbaumer Knaflic

Для кого. Для тех, кто уже умеет проводить анализ данных и учится визуализировать результаты.

Читать еще:  Скачать книги по data science

О чем. Книга об эстетическом представлении результатов анализа данных, понимании аудитории, подборе оптимального способа подачи информации. Содержит реальные примеры визуализации и их разбор.

Польза. Научит основам визуализации данных и наглядно покажет, как применять процесс в создании презентаций.

«Hadoop for Dummies», Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk

Для кого. Для тех, кто начинает знакомство с Hadoop.

О чем. Книга содержит описание экосистемы Hadoop 2 и Yarn, примеры их реального использования, подробную инструкцию по установке кластера. Предоставляет детальную информацию о работе с SQL и Hive, развертывании Hadoop в облаке.

Польза. Научит работать с кластерами, шаблонами проектирования и экосистемой Hadoop на начальном уровне.

«Hadoop: The Definitive Guide», Tom White

Для кого. Для тех, кто хочет научиться использовать набор инструментов Hadoop на практике.

О чем. Сборник тематических исследований, как Hadoop решает конкретные задачи. Автор приводит детальный анализ каждого исследования и объясняет, как использовать инструменты в аналогичных ситуациях.

Польза. Научит использовать Hadoop Distributed File System для хранения больших массивов данных, создавать и настраивать кластеры Hadoop. Расскажет о возможностях MapReduce и распространенных ошибках в работе с моделью.

Мнение автора и редакции может не совпадать. Хотите написать колонку для «Нетологии»? Читайте наши условия публикации. Чтобы быть в курсе всех новостей и читать новые статьи, присоединяйтесь к Телеграм-каналу Нетологии.

Анализ данных книга

Роль методов анализа данных в нашей жизни весьма значительна. Люди, часто не задумываясь и не осознавая, постоянно их используют в повседневной практике. Анализ данных пронизывает все аспекты современной жизни, служит основой для многих решений в предпринимательской и общественной деятельности, информируют о тенденциях и факторах, которые влияют на нашу жизнь. Анализ данных как научная дисциплина в системе прикладной статистики разрабатывает и систематизирует понятия, приемы, математические методы и модели, предназначенные для организации отбора из исследуемой совокупности подлежащих обследованию единиц, их стандартной записи, систематизации и обработке с целью их удобного представления и интерпретации, получения научных и практических выводов. В настоящем учебнике анализ данных рассматривается как дисциплина, основанная на статистических методах и вычислительных алгоритмах, позволяющих извлекать знания из результатов наблюдений.

Читать еще:  Книги по решению кейсов

Сборник включает статьи участников международной научно-практической конференции «Экономика и управление: проблемы и перспективы развития», прошедшей 15-16 ноября 2010 г. в г. Волгограде на базе Регионального центра социально-экономических и политических исследований «Общественное содействие». Статьи посвящены актуальным вопросам экономической, управленческой теории и практики, изучаемыми учеными из разных стран — участниц конференции.

Колоссальный рост объема разнообразной информации в современном обществе (30% в год), называемый информационным взрывом, настоятельно требует, как новых решений в области анализа данных, так и новых, высококвалифицированных кадров в этой области. Спрос на таких специалистов растет экспоненциально. При этом особенно остро недостаток таких специалистов наблюдается в междисциплинарных областях, таких, как экономика и финансы. Крупнейшие финансовые компании и банки (Сбербанк, ВТБ, Тиньков-банк) постепенно перемещаются в область анализа данных и IT-технологий, становясь сильными игроками и в этих, еще недавно совсем новых для них областях. Помимо этих компаний, большой спрос на высококвалифицированных специалистов наблюдается и в разного рода хедж-фондах (Synthesys, Quantstellation, datafork, Worldquant ltd и др.). Таким компаниям требуются специалисты, которые наряду с программистскими навыками владеют основами финансовых технологий и анализа данных в финансах. Острая потребность кадров в таких областях наблюдается не только в России — это общемировая тенденция. В ответ на эту потребность практически во всех современных зарубежных университетах либо открыты, либо открываются программы на стыке анализа данных и финансовых технологий. В этой связи представляется актуальной открытие новых образовательных программ в области анализа данных в финансах. В данном докладе анализируются особенности построения такого рода программ, способы интеграции лекционных и практических курсов в области информационных технологий, экономики и финансов, варианты интернационализации таких программ, методы привлечения ведущих иностранных и корпоративных партнеров.

Ссылка на основную публикацию
Adblock
detector