Пространственные системы сил онлайн
Теоретическая механика:
Пространственная система сил
Смотрите также решения задач по теме «Пространственная система сил» в онлайн решебниках Яблонского и Мещерского.
При решении задач, приведенных в этой главе, необходимо использовать не две оси координат, которые всегда можно расположить в одной плоскости – в плоскости рисунка, иллюстрирующего задачу, а три взаимно перпендикулярные оси.
Эти оси нельзя расположить в одной плоскости и при изображении пространственной системы сил на рисунке надо использовать одну из принятых в машиностроительном черчении аксонометрических проекций (ГОСТ 2.305–68. Изображения – виды, разрезы, сечения).
На рис. 145 показано изображение трех взаимно перпендикулярных плоскостей в изометрической проекции. Пересечение двух вертикальных плоскостей определяет положение вертикальной оси z, пересечением обеих вертикальных плоскостей с горизонтальной определяются положения двух горизонтальных осей х и у.
На рис. 146 представлены те же три взаимно перпендикулярные плоскости в диметрической проекции, а на рис. 147 – в фронтальной диметрическои проекции. На каждом рисунке справа показано положение осей при изображении соответствующей проекции.
Если при решении задач, в которых рассматривается пространственная система сил, трудно представить взаимное расположение сил или их расположение относительно выбранных осей координат, то следует изготовить из плотной бумаги модель трех пересекающихся под прямым углом плоскостей, а линии пересечения плоскостей выделить цветными линиями и обозначить их соответственно х, у и z. В такой модели трех взаимно перпендикулярных осей можно помещать модели систем сил, рассматриваемых в задаче, изготовленные из пластилина, проволочек и спичек.
§ 18. Правило параллелепипеда сил
Простейшую пространственную систему сходящихся сил образуют три силы, приложенные к одной точке.
Для сложения таких трех сил применяется правило параллелепипеда (рис. 148). Если даны силы P1, P2 и P3, то заменяющая их действие равнодействующая R по модулю и направлению соответствует диагонали АЕ параллелепипеда, ребра которого AB, АС и AD соответствуют трем силам.
В частном случае, который наиболее характерен для решения практических задач, три данные силы P1, P2 и P3 взаимно перпендикулярны и тогда при их сложении образуется прямоугольный параллелепипед (рис. 149).
В этом случае модуль равнодействующей
R = sqrt(P1 2 + P2 2 + P3 2 )
а направление R относительно каждой из составляющих сил можно найти по формулам
cos α1 = P1/R; cos α2 = P2/R; cos α3 = P3/R.
Так же как и правило параллелограмма (см. § 1, 5 и 6), правило параллелепипеда можно использовать не только при сложении сил, но и при разложении данной силы на три составляющие. Наиболее часто производят разложение силы на составляющие, действующие по трем взаимно перпендикулярным направлениям.
§ 19. Проекция силы на три взаимно перпендикулярные оси. Определение равнодействующей системы пространственных сил, приложенных к точке
Если требуется определить проекции силы Р на три взаимно перпендикулярные оси (рис. 152), то обычно силу проектируют сначала на одну из плоскостей (например, горизонтальную), а уже затем на оси, расположенные в этой плоскости. При этом нужно обратить внимание на то, что в отличие от проекций силы на оси, являющихся скалярами, проекция силы на плоскость (Pxy на рис. 152) – величина векторная (Е. М. Никитин, § 38).
Легко заметить, что на трех взаимно перпендикулярных проекциях можно построить прямоугольный параллелепипед, диагональю которого является проектируемый вектор.
Из рис. 152 видно, что проекция на горизонтальную плоскость
Pxy = P cos α,
поэтому
X = P cos α cos αx; Y = P cos α cos αy и Z = P cos φz.
Если же известны углы φx и φy (на рисунке они не показаны), образуемые вектором Р с осями х и у, то его проекции на эти оси соответственно равны
X = P cos φx и Y = P cos φy.
При помощи проекций сил на три оси легко определить равнодействующую системы сил, приложенных к точке.
Для этого необходимо:
1) выбрать расположение осей так, чтобы проекции всех сил определились простейшим образом;
2) найти проекции всех сил на каждую из осей;
3) сложить проекции всех сил на каждую из осей и найти таким образом три проекции искомой равнодействующей на оси:
XR = ∑ Xi; YR = ∑ Yi и ZR = ∑ Zi;
4) определить модуль равнодействующей R:
R = sqrt(XR 2 + YR 2 + ZR 2 );
5) определить направление равнодействующей, найдя какие-либо два угла из трех:
cos φx = XR/R; cos φy = YR/R; cos φz = ZR/R.
§ 20. Равновесие пространственной системы сходящихся сил
Если система сходящихся сил уравновешена, то ее равнодействующая R=0, а это означает, что и проекции равнодействующей на три взаимно перпендикулярные оси равны нулю (XR=0, YR=0, ZR=0). Отсюда образуются три уравнения равновесия:
∑ Xi = 0;
∑ Yi = 0;
∑ Zi = 0.
При помощи этих уравнений и решаются задачи на равновесие пространственной системы сходящихся сил.
Уравнений равновесия – три, следовательно, статически определимой является такая пространственная система сходящихся сил, в которой неизвестных сил не более трех.
§ 21. Момент силы относительно оси
Чтобы определить момент силы Р относительно заданной или выбранной оси, например оси z (рис. 157), необходимо выполнить следующие операции:
1) расположить плоскость Н перпендикулярно оси z;
2) определить проекцию силы Р на плоскость H – найти PH;
3) из точки пересечения оси с плоскостью (из точки О) провести перпендикуляр к направлению проекции PH и определить длину этого перпендикуляра OA – плечо силы PH;
4) определить знак момента, придерживаясь такого правила: посмотрим на плоскость Н со стороны положительного направления оси, если увидим, что проекция PH поворачивает плечо против хода часовой стрелки, значит момент имеет положительный знак; а если проекция PH поворачивает плечо по часовой стрелке (как это показано, например, на рис. 157), момент имеет отрицательный знак;
5) находим числовое значение момента силы Р относительно оси; для этого PH – модуль проекции силы Р на плоскость, перпендикулярную к оси, умножаем на плечо OA.
Таким образом (см. рис. 157)
Mz(P) = -PH * OA.
Момент силы относительно оси, так же как и момент силы относительно точки, измеряется по Международной системе (СИ) в ньютон-метрах (Н*м), а по технической системе (МКГСС) – в кГ*м.
Для успешного решения задач и облегчения составления уравнений моментов относительно осей нужно иметь в виду три частных случая, в которых момент силы относительно оси равен нулю (рис. 158):
Случай 1-й (рис. 158, а). Сила Р или линия ее действия пересекает ось; в этом случае плечо OA=0, поэтому PH*OA=0.
Случай 2-й (рис. 158, б). Линия действия силы Р параллельна оси; в этом случае PH=0, поэтому PH*OA=0.
Случай 3-й (рис. 158, в). Линия действия силы Р совпадает с осью; в этом случае и PH=0 и плечо OA=0.
§ 22. Равновесие произвольной пространственной системы сил
Произвольную пространственную систему сил, так же как и плоскую, можно привести к одной точке и заменить главным вектором Rгл и главным моментом Mгл. Только в этом случае линия действия главного вектора может находиться не в плоскости действия главного момента.
Если Rгл=0 и Mгл=0, то система сил уравновешена и отсюда образуется система шести уравнений равновесия:
∑ Xi = 0;
∑ Yi = 0;
(1) ∑ Zi = 0;
∑ Mx(Pi) = 0;
∑ My(Pi) = 0;
∑ Mz(Pi) = 0.
Первые три уравнения (уравнения проекций) получены из условия Rгл=0. Если главный вектор равен нулю, то и алгебраические суммы проекций всех сил на каждую из осей также равны нулю.
Последние три уравнения (уравнения моментов) получены из условия Mгл=0. Если главный момент системы сил равен нулю, то алгебраические суммы моментов сил относительно каждой из осей равны нулю.
Для облегчения составления уравнений равновесия тело, равновесие которого рассматривается, целесообразно изображать вместе с действующими на него силами в проекциях на три основные плоскости, т. е. изображать вид спереди, вид сверху и один боковой вид – вид слева или вид справа (см. задачи 115, 116 и 117).
В частном случае линии действия сил, образующих пространственную систему, могут оказаться параллельными. Тогда одну из осей (например, ось z) выгодно расположить параллельно силам (рис. 160), а две другие оси расположатся в плоскости, перпендикулярной к линиям действия сил.
Легко понять, что для уравновешенной пространственной системы параллельных сил вместо шести уравнений можно составить лишь три: алгебраическую сумму проекций сил на ось, параллельную данным силам, и два уравнения моментов относительно двух других осей. Остальные уравнения превратятся в тождество вида 0=0.
В соответствии с расположением осей (см. рис. 160) уравнения равновесия имеют вид:
∑ Zi = 0;
(2) ∑ Mx(Pi) = 0;
∑ My(Pi) = 0.
Для пространственной системы параллельных сил можно составить лишь три уравнения равновесия, поэтому, чтобы задача была статически определимой, в ней должно содержаться не более трех неизвестных сил.
В следующих задачах рассматриваются системы сил, произвольно расположенные в пространстве.
Одной из типичных задач, в которых применяются уравнения равновесия пространственной системы сил, является задача определения реакций опор вала какой-либо машины.
Задачи этого типа можно решать так же, как задачи 115 или 116, т. е. при помощи проекций вала вместе с векторами заданных и искомых сил на три взаимно перпендикулярные плоскости. Но в некоторых случаях оказывается более рациональным несколько иной прием решения, основанный на приведении сил к оси вала. В качестве примера для такого решения возьмем вал одного из многочисленных видов редукторов (редуктором называется механическое устройство для передачи мощности от двигателя, вал которого вращается с большой скоростью, к рабочей машине, вал которой имеет скорость вращения, в несколько раз меньшую).
© 2002-2019 Vladimir Filippov | designed by Phantom
Пространственная система сил
Силы, сходящиеся в точке. Силы, линии действия которых НС лежат в одной плоскости, образуют пространственную систему сил. Если линии действия сил пересекаются в одной точке, но не лежат в одной плоскости (рис. 1.59), то они образуют пространственную систему сходящихся сил. Главный момент такой системы сил относительно точки О, в которой пересекаются линии действия сил, всегда равен нулю, т.е. такая система сил в общем случае эквивалентна равнодействующей, линия действия которой проходит через точку О.
Рис. 1.59. Пространственная система сходящихся сил
При использовании ОЗС (1.5) условия равновесия такой системы сил в рассматриваемом случае сводятся к выражению /? = (), и их можно записать в виде трех уравнений равновесия:
Если пространственная система сходящихся сил находится в равновесии, то суммы проекций всех сил на три декартовых оси координат равны нулю.
В случае пространственной системы сил может получиться так, что линия действия силы и ось являются скрещивающимися прямыми. В этом случае при составлении уравнений равновесия используется прием двойного проектирования (рис. 1.60).
Рис. 1.Б0. К приему двойного проектирования сил
Суть этого приема состоит в том, что для нахождения проекции силы на ось сначала проектируем ее на плоскость, содержащую эту ось, а затем уже непосредственно на саму ось: ЁХУ = Я^пу; Ех = |Т^гк|с05ф = / г 5туС08ф.
Произвольная пространственная система сил. Силы, линии действия которых не лежат в одной плоскости и не пересекаются в одной точке, образуют произвольную пространственную систему сил (рис. 1.61). Для такой системы отсутствует какая-либо предварительная информация о величинах, или направлениях главного вектора и главного момента. Поэтому необходимые условия равновесия, вытекающие из ОЗС, Я = 0; М0 = 0, приводят к шести скалярным уравнениям:
Из ОЗС следует, что при равновесии произвольной пространственной системы сил три проекции главного вектора и три проекции главного момента внешних сил равны нулю.
Рис. 1.61. Произвольная пространственная система сил
Практическое использование этих соотношений не вызывает труда в случае нахождения проекций сил, требуемых для вычисления проекции главного вектора, тогда как вычисление проекций векторов моментов может оказаться весьма затруднительным, так как ни величины, ни направления этих векторов заранее не известны. Решение задач значительно упрощается, если использовать понятие «момент силы относительно оси».
Момент силы относительно оси — это проекция на эту ось вектора-момента силы относительно любой точки, лежащей на этой оси (рис. 1.62):
где /л(/ 7 ) = г0 х Т 7 — вектор-момент силы относительно точки О.
Рис. 1.Б2. К определению момента силы относительно оси
Модуль этого вектора равен |ал(/ ; )| = 25ДО/1й = /7?, где — площадь треугольника ОЛВ.
минуя определение вектора-момента т(Р). Построим плоскость л, перпендикулярную оси, относительно которой определяется момент, и спроектируем силу на эту плоскость. По определению момент силы относительно оси:
Таким образом, модуль момента силы относительно оси можно определить как произведение модуля проекции силы на плоскость л, перпендикулярную рассматриваемой оси, на расстояние от точки пересечения оси с плоскостью л до линии действия силы Рк, т.е. для определения момента силы относительно оси нет необходимости предварительно определять вектор та(Р), а затем проектировать его на ось Ох.
Примечание. Заметим, что модуль момента относительно оси не зависит от выбора точки на оси, относительно которой вычисляют вектор момента, так как проекция площади АОАВ на плоскасть л не зависит от выбора точки О.
Из изложенного вытекает последовательность действий при определении момента силы относительно оси (см. рис. 1.61):
- • строим плоскость л, перпендикулярную Ох, и отмечаем точку О;
- • проектируем силу на эту плоскость;
- • вычисляем модуль момента относительно оси и присваиваем полученному результату знак «+» или «—»:
- (1.28)
Правило знаков следует из знака проекции вектора тох(Р): если смотреть с «положительного конца» оси «поворот отрезка Их » силой Рп виден происходящим против хода часовой стрелки, то момент силы относительно оси считают положительным, в противном случае — отрицательным (рис. 1.63).
Рис. 1.63. К определению знака момента силы относительно оси
1 Рг — от фр. ргсуесйоп — проекция.
Примечание. Момент силы относительно оси равен нулю, когда сила параллельна оси или пересекает эту ось, т.е. момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости (рис. 1.64).
Рис. 1.В4. Случаи равенства нулю момента силы
С физической точки зрения момент силы относительно оси характеризует вращательный эффект силы по отношению к оси.
Уравнения равновесия произвольной пространственной системы сил. Учитывая, что согласно ОЗС для пространственной системы сил, находящейся в равновесии, Я = 0; Ма = 0. Выражая проекции главного вектора через суммы проекций сил системы, а проекции главного момента — через суммы моментов отдельных сил относительно осей, получаем шесть уравнений равновесия произвольной пространственной системы сил:
Таким образом, если произвольная пространственная система сил находится в равновесии, то сумма проекции всех сил на три оси декартовых координат и суммы моментов всех сил относительно этих осей равны нулю.
Пары сил в пространстве. В пространственной системе сил могут встречаться пары сил, расположенные в разных плоскостях, и при вычислении главного момента возникает необходимость нахождения моментов этих пар сил относительно разных точек пространства, не лежащих в плоскости пар.
Пусть силы пары расположены в точках/! и В (рис. 1.65). Тогда имеем: РА = —Рв, а по модулю РА = Рв = Р. Из рис. 1.65 следует, что гв = гл + Л В.
Рис. 1.В5. К определению вектора-момента пары сил относительно точки,
не лежащей в плоскости пары
Найдем главный момент пары сил относительно точки О:
Поскольку положение точки О не вошло в конечный результат, отметим, что вектор-момент пары сил т не зависит от выбора мо-ментной точки О и определяется как момент одной из сил пары относительно точки приложения другой силы. Вектор-момент пары сил перпендикулярен плоскости действия пары и направлен так, чтобы с конца его видеть возможное вращение против хода часовой стрелки. Модуль вектора-момента пары сил равен произведению величины силы пары на плечо, т.е. ранее определенному значению момента пары в плоской системе сил:
Вектор-момент пары сил является «свободным» вектором; его можно прикладывать в любой точке пространства, не изменяя модуля и направления, что соответствует возможности переноса пары сил в любую параллельную плоскость.
Момент пары сил относительно оси. Поскольку момент пары сил — вектор «свободный», то всегда пару сил, заданную векгором-момента,
можно расположить так, чтобы одна из сил пары (-^) пересекала заданную ось в произвольной точке О (рис. 1.66). Тогда момент
пары сил будет равен моменту силы Р относительно точки О:
Рис. 1.ББ. К определению момента пары сил относительно оси
Момент пары сил относительно оси определяют как проекцию на эту ось вектора-момента силы F относительно точки О, или, что то же самое, как проекцию вектора-момента пары сил m(F,-F) на эту ось:
Некоторые примеры пространственных связей:
? сферический шарнир (рис. 1.67) позволяет осуществлять поворот вокруг точки в любом направлении. Поэтому, отбрасывая такую связь, нужно приложить силу /V, которая проходит через центр шарнира и неизвестна по величине и направлению в пространстве. Разлагая эту силу по направлениям трех координатных осей, получим три неизвестные реакции: ХА, Ya, Za;
Рис. 1.Б7. Сферический шарнир и схематическое изображение его реакций
? подшипник скольжения позволяет реализовать поворот вокруг своей оси и допускает свободу перемещения вдоль этой оси. Предполагая, что размер 8 очень мал и реактивными моментами относительно осей х и у можно пренебречь, получим одну неизвестную по величине и направлению реактивную силу NА или две неизвестные реакции: ХА, УА (рис. 1.68);
Рис. 1.Б8. Реакции подшипника со свободной осью
? подпятник (рис. 1.69) в отличие от подшипника позволяет осуществлять поворот вокруг своей оси, нс допуская перемещения вдоль нее, и имеет три неизвестные реакции: XА, ?Л, Z/1;
? глухая пространственная заделка (рис. 1.70). Поскольку при отбрасывании такой связи возникает произвольная пространственная реактивная система сил, характеризуемая главным вектором /? неизвестной величины и направления и главным моментом, например, относительно центра заделки А, также неизвестным по величине и направлению, то представим каждый из этих векторов в виде компонентов по осям: Я = XА + УА + 2 А; МА = тАХ + тАУ + тАг.
Рис. 1.70. Реакции глухой пространственной заделки
Делаем вывод, что глухая пространственная заделка имеет шесть неизвестных реакций — три составляющих силы и три момента относительно осей, величины которых равны соответствующим проекциям сил и моментов на координатные оси: XА, Ул 2А, тАХ; тАУтА/.
Решение задач. При решении задач на равновесие пространственной системы сил весьма существенным является составление уравнений, которые можно решить простым способом. Для этих целей оси, относительно которых составляют уравнения моментов, следует выбирать так, чтобы они пересекли как можно больше неизвестных сил или были им параллельны. Желательно направлять оси проекций так, чтобы отдельные неизвестные были им перпендикулярны.
При затруднениях, возникающих в процессе определения момента силы относительно осей, следует заменить отдельные силы эквивалентными совокупностями двух сил, для которых вычисления упрощаются. В ряде случаев полезно отображать проекции рассматриваемой системы на координатные плоскости.
Заметим, опуская доказательства, что подобно тому, как это было в плоской системе сил, составляя уравнения равновесия для пространственной системы сил, можно увеличивать число уравнений моментов относительно осей вплоть до шести, соблюдая некоторые ограничения, накладываемые на направление осей, такие, чтобы уравнения моментов были бы линейно независимы.
Задача 1.3. Прямоугольная плита, опертая в точке В на сферический
шарнир и закрепленная в точках А и С с помощью стержней, поддер-
живается в равновесии нитью, как показано на рис. 1.71. Определить реакции связей плиты ЛВС.
Рис. 1.71. Равновесие тела под действием пространственной системы сил
Д а н о: G, т, Za, Z(3 = л/4.
Выбирая начало координат в точке В, выразим составляющие пространственно ориентированной реактивной силы Т по оси z и плоскости Вху:
Условия равновесия для данной системы будут представлять систему последовательно решаемых уравнений, которые запишем, опуская пределы суммирования, в виде:
Техническая механика
Пространственная система сил
Пространственная система сходящихся сил
Система сил, линии действия которых расположены в различных плоскостях, называется пространственной системой сил .
Пространственная система сил называется сходящейся , если линии действия всех сил системы пересекаются в одной точке.
Теорема: пространственная система сходящихся сил эквивалентна равнодействующей, которая равна векторной сумме этих сил; линия действия равнодействующей проходит через точку пересечения линий действия составляющих сил.
Пусть дана пространственная система n сходящихся сил (F1, F2, F3. Fn) . На основании следствия из аксиом III и IV перенесем все силы системы вдоль линий действия в точку их пересечения. Затем на основании аксиомы параллелограмма последовательно сложим все силы и получим их равнодействующую:
Силовой многоугольник пространственной системы сил не лежит в одной плоскости, поэтому геометрический и графический способы нахождения равнодействующей пространственной системы сходящихся сил неприемлемы, а применяется только аналитический способ (метод проекций) .
Проекция силы на ось в пространстве находится по проецирующим перпендикулярам, и может быть определена при помощи тригонометрических функций. При определении проекций сил пространственной системы потребуется система координат с осями X , Y , Z , поскольку силы системы не располагаются в одной плоскости.
Правило знаков для проекций будет таким же, как и для плоской системы сил – совпадающие по направлению с координатной осью силы считаются положительными, в противном случае – отрицательными. Если вектор силы параллелен какой-либо оси координат, то он проецируется на эту ось в натуральную величину, если же вектор перпендикулярен оси, его проекция на эту ось будет равна нулю.
Разложение силы по трем осям координат
Пусть дана сила F (см. рисунок 1) .
Возьмем систему координат так, чтобы начало координат совпадало с началом вектора силы F (т. е. с точкой приложения силы). Из конца этого вектора опустим перпендикуляр на плоскость xy и разложим силу F на составляющие Fxy и Fz , а составляющую Fxy – на составляющие Fx и Fy . Тогда:
Достроим полученное изображение до параллелепипеда, у которого составляющие Fx , Fy и Fz являются ребрами, а сила F – диагональю.
Из изложенного можно сделать вывод: равнодействующая трех взаимно-перпендикулярных сил выражается по модулю и направлению диагональю параллелепипеда, построенного на этих силах .
Из рисунка видно, что в случаях разложения силы F по трем взаимно-перпендикулярным направлениям x , y , z составляющие Fx , Fy и Fz равны по модулю проекциям силы F на эти оси.
Зная проекции силы на три взаимно-перпендикулярные оси координат, можно определить модуль и направление вектора силы по формулам:
модуль силы: F = √(Fx 2 + Fy 2 + Fz 2 ) (здесь и далее √ — знак корня) ;
направляющие косинусы: cos(F,x) = Fx/F; cos(F,y) = Fy/F; cos(F,z) = Fz/F .
Аналитический способ определения равнодействующей пространственной системы сходящихся сил
Рассмотренный выше способ разложения силы F на три составляющие по направлению координатных осей x , y , z можно применить для каждой из сходящихся сил пространственной системы. Тогда вместо данной системы n сходящихся сил мы получим эквивалентную ей систему 3n сил, из которых n сил действуют по оси x , n сил – по оси y , и n сил – по оси z .
Равнодействующая проекций сил системы на ось x равна их геометрической сумме, то же самое можно сказать и о равнодействующих проекций сил на оси y и z .
Таким образом, систему 3n сил можно заменить эквивалентной ей системой трех сил, каждая из которых представляет собой равнодействующую проекций сил данной системы на ту или иную ось координат.
Проекции силы на три взаимно-перпендикулярные оси и составляющие силы, направленные по этим осям, равны по модулю, следовательно, проекции равнодействующей равны:
Очевидно, что равнодействующая трех взаимно перпендикулярных сил выражается по модулю и направлению диагональю параллелепипеда, построенного на этих силах, и по известным проекциям равнодействующей можно определить модуль и направление самой равнодействующей.
Аналитические условия равновесия пространственной системы сходящихся сил
Известно, что пространственная система сходящихся сил эквивалентна равнодействующей. Если такая система сил находится в равновесии, т. е. эквивалентна нулю, то можно сделать вывод, что равнодействующая этой системы равна нулю, а следовательно, и проекции равнодействующей тоже равны нулю, причем эти проекции равны сумме проекций составляющих.
Отсюда вытекают условия равновесия пространственной системы сходящихся сил:
ΣX = 0; ΣY = 0; ΣZ = 0 .
Эти условия формируются следующим образом: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы алгебраическая сумма проекций всех сил на каждую их трех координатных осей равнялась нулю.
Момент силы относительно оси
Рассмотрим колесо червячной передачи, укрепленное на валу, вращающемся в подшипниках (см. рисунок 2) . Червяк передает червячному колесу силу F , не лежащую в плоскости, перпендикулярной оси.
Разложим силу F на три взаимно-перпендикулярные составляющие F1 , F2 и F3 .
Составляющую F1 назовем окружной силой , составляющую F2 – осевой силой , а составляющую F3 – радиальной силой .
Из рисунка видно, что составляющая F1 вызывает вращательное действие, которое измеряется произведением силы F1 на радиус колеса r ; составляющая F2 стремится сдвинуть червячное колесо вдоль оси, а составляющая F3 стремится изогнуть ось колеса.
Очевидно, что вращающее действие сил F2 и F3 относительно оси колеса равно нулю.
Таким образом, если нужно найти момент силы относительно оси, то следует принимать в расчет только составляющую F1 , лежащую в плоскости, перпендикулярной оси, и не пересекающую ось (иначе ее момент будет равен нулю).
Ранее было отмечено, что проекция вектора силы на ось есть скалярная алгебраическая величина. В отличие от проекции на ось проекция силы на плоскость есть величина векторная, так как эта проекция характеризуется не только числовым значением, но и положением на плоскости, т. е. направлением.
Поэтому моменту силы относительно оси можно дать такое определение: моментом силы относительно оси называется величина, равная моменту проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.
Это определение поясняет рисунок 3 .
Момент силы относительно оси условимся записывать следующим образом:
Условимся считать момент силы положительным, если смотреть с положительного конца оси и сила стремится вызвать вращение против часовой стрелки, если же сила стремится вызвать вращение по часовой стрелке, ее момент считаем отрицательным.
Момент силы относительно оси не меняется при перемещении силы вдоль оси ее действия.
Момент силы будет равен нулю в двух случаях (не считая случаев, когда сила равна нулю или направлена вдоль оси):
- если вектор силы параллелен оси, так как при этом проекция силы на плоскость, перпендикулярную оси, равна нулю (см. рисунок 3, сила FZ) ;
- если линия действия силы пересекает ось, так как при этом плечо равно нулю (сила F3 на рисунке 2) .
Аналитические условия равновесия пространственной системы произвольно расположенных сил
Пространственная система сил, в которой линии действия составляющих сил расположены произвольно, т. е. линии их действия могут не пересекаться и находиться в разных плоскостях, называется произвольно расположенной системой сил.
Для равновесия пространственной системы произвольно расположенных сил необходимо и достаточно, чтобы алгебраическая сумма проекций всех сил на каждую из трех осей координат была равна нулю и чтобы алгебраическая сумма моментов всех сил относительно каждой из этих осей была равна нулю.
Строгое обоснование приведенного выше условия равновесия пространственной системы произвольно расположенных сил требует знания некоторых вопросов, не предусмотренных программами учреждений среднего профессионального образования, поэтому условие равновесия такой системы здесь приводится без доказательства.
Математически условие равновесия пространственной системы произвольно расположенных сил можно записать в виде уравнений:
- ΣX = 0; ΣMx(Fi) = 0;
- ΣY = 0; ΣMy(Fi) = 0;
- ΣZ = 0; ΣMz(Fi) = 0.
Свободное тело в пространстве имеет шесть степеней свободы, а именно: возможность перемещаться в направлениях трех взаимно-перпендикулярных осей координат и возможность вращаться вокруг этих осей. Таким образом, шести степеням свободы тела в пространстве соответствуют шесть условий равновесия.
Если система сил, приложенных к свободному телу, удовлетворяет всем шести условиям равновесия, то возможность трех перемещений и трех вращений тела под действием сил системы исключена, поэтому тело будет находится в равновесии.
Очевидно, что все выведенные ранее условия равновесия для различных систем сил являются частными случаями условия равновесия пространственной системы произвольно расположенных сил.
Так как условия равновесия пространственной системы сил справедливы для любых прямоугольных осей координат, то при решении данной задачи систему координат можно изменять, т. е. часть уравнений равновесия составить для одних осей координат, а часть – для измененных. В некоторых случаях этот прием упрощает решение задач.
Теорема о моменте равнодействующей относительно оси
(теорема Вариньона)
Теорема: момент равнодействующей относительно оси равен алгебраической сумме моментов, составляющих сил относительно этой же оси .
Пусть даны пространственная система n произвольно расположенных сил, приложенных к телу, и равнодействующая этой системы сил FΣ (см. рисунок 4) :
Приложим к телу другую систему сил, равнодействующая которой F’Σ по модулю равна FΣ и направлена по той же линии действия, но в противоположную сторону, т. е. является уравновешивающей данной системы сил.
Тогда можно записать:
Так как обе записанные выше системы сил эквивалентны нулю, т. е. уравновешены, то к ним можно применить любое условие равновесия, например
Запишем это условие для обеих систем:
Так как правые части этих равенств равны, то будут равны и левые :
Сократив общее слагаемое Mx(F’Σ) , получим:
Пространственная система сил
Силы, сходящиеся в точке. Силы, линии действия которых НС лежат в одной плоскости, образуют пространственную систему сил. Если линии действия сил пересекаются в одной точке, но не лежат в одной плоскости (рис. 1.59), то они образуют пространственную систему сходящихся сил. Главный момент такой системы сил относительно точки О, в которой пересекаются линии действия сил, всегда равен нулю, т.е. такая система сил в общем случае эквивалентна равнодействующей, линия действия которой проходит через точку О.
Рис. 1.59. Пространственная система сходящихся сил
При использовании ОЗС (1.5) условия равновесия такой системы сил в рассматриваемом случае сводятся к выражению /? = (), и их можно записать в виде трех уравнений равновесия:
Если пространственная система сходящихся сил находится в равновесии, то суммы проекций всех сил на три декартовых оси координат равны нулю.
В случае пространственной системы сил может получиться так, что линия действия силы и ось являются скрещивающимися прямыми. В этом случае при составлении уравнений равновесия используется прием двойного проектирования (рис. 1.60).
Рис. 1.Б0. К приему двойного проектирования сил
Суть этого приема состоит в том, что для нахождения проекции силы на ось сначала проектируем ее на плоскость, содержащую эту ось, а затем уже непосредственно на саму ось: ЁХУ = Я^пу; Ех = |Т^гк|с05ф = / г 5туС08ф.
Произвольная пространственная система сил. Силы, линии действия которых не лежат в одной плоскости и не пересекаются в одной точке, образуют произвольную пространственную систему сил (рис. 1.61). Для такой системы отсутствует какая-либо предварительная информация о величинах, или направлениях главного вектора и главного момента. Поэтому необходимые условия равновесия, вытекающие из ОЗС, Я = 0; М0 = 0, приводят к шести скалярным уравнениям:
Из ОЗС следует, что при равновесии произвольной пространственной системы сил три проекции главного вектора и три проекции главного момента внешних сил равны нулю.
Рис. 1.61. Произвольная пространственная система сил
Практическое использование этих соотношений не вызывает труда в случае нахождения проекций сил, требуемых для вычисления проекции главного вектора, тогда как вычисление проекций векторов моментов может оказаться весьма затруднительным, так как ни величины, ни направления этих векторов заранее не известны. Решение задач значительно упрощается, если использовать понятие «момент силы относительно оси».
Момент силы относительно оси — это проекция на эту ось вектора-момента силы относительно любой точки, лежащей на этой оси (рис. 1.62):
где /л(/ 7 ) = г0 х Т 7 — вектор-момент силы относительно точки О.
Рис. 1.Б2. К определению момента силы относительно оси
Модуль этого вектора равен |ал(/ ; )| = 25ДО/1й = /7?, где — площадь треугольника ОЛВ.
минуя определение вектора-момента т(Р). Построим плоскость л, перпендикулярную оси, относительно которой определяется момент, и спроектируем силу на эту плоскость. По определению момент силы относительно оси:
Таким образом, модуль момента силы относительно оси можно определить как произведение модуля проекции силы на плоскость л, перпендикулярную рассматриваемой оси, на расстояние от точки пересечения оси с плоскостью л до линии действия силы Рк, т.е. для определения момента силы относительно оси нет необходимости предварительно определять вектор та(Р), а затем проектировать его на ось Ох.
Примечание. Заметим, что модуль момента относительно оси не зависит от выбора точки на оси, относительно которой вычисляют вектор момента, так как проекция площади АОАВ на плоскасть л не зависит от выбора точки О.
Из изложенного вытекает последовательность действий при определении момента силы относительно оси (см. рис. 1.61):
- • строим плоскость л, перпендикулярную Ох, и отмечаем точку О;
- • проектируем силу на эту плоскость;
- • вычисляем модуль момента относительно оси и присваиваем полученному результату знак «+» или «—»:
- (1.28)
Правило знаков следует из знака проекции вектора тох(Р): если смотреть с «положительного конца» оси «поворот отрезка Их » силой Рп виден происходящим против хода часовой стрелки, то момент силы относительно оси считают положительным, в противном случае — отрицательным (рис. 1.63).
Рис. 1.63. К определению знака момента силы относительно оси
1 Рг — от фр. ргсуесйоп — проекция.
Примечание. Момент силы относительно оси равен нулю, когда сила параллельна оси или пересекает эту ось, т.е. момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости (рис. 1.64).
Рис. 1.В4. Случаи равенства нулю момента силы
С физической точки зрения момент силы относительно оси характеризует вращательный эффект силы по отношению к оси.
Уравнения равновесия произвольной пространственной системы сил. Учитывая, что согласно ОЗС для пространственной системы сил, находящейся в равновесии, Я = 0; Ма = 0. Выражая проекции главного вектора через суммы проекций сил системы, а проекции главного момента — через суммы моментов отдельных сил относительно осей, получаем шесть уравнений равновесия произвольной пространственной системы сил:
Таким образом, если произвольная пространственная система сил находится в равновесии, то сумма проекции всех сил на три оси декартовых координат и суммы моментов всех сил относительно этих осей равны нулю.
Пары сил в пространстве. В пространственной системе сил могут встречаться пары сил, расположенные в разных плоскостях, и при вычислении главного момента возникает необходимость нахождения моментов этих пар сил относительно разных точек пространства, не лежащих в плоскости пар.
Пусть силы пары расположены в точках/! и В (рис. 1.65). Тогда имеем: РА = —Рв, а по модулю РА = Рв = Р. Из рис. 1.65 следует, что гв = гл + Л В.
Рис. 1.В5. К определению вектора-момента пары сил относительно точки,
не лежащей в плоскости пары
Найдем главный момент пары сил относительно точки О:
Поскольку положение точки О не вошло в конечный результат, отметим, что вектор-момент пары сил т не зависит от выбора мо-ментной точки О и определяется как момент одной из сил пары относительно точки приложения другой силы. Вектор-момент пары сил перпендикулярен плоскости действия пары и направлен так, чтобы с конца его видеть возможное вращение против хода часовой стрелки. Модуль вектора-момента пары сил равен произведению величины силы пары на плечо, т.е. ранее определенному значению момента пары в плоской системе сил:
Вектор-момент пары сил является «свободным» вектором; его можно прикладывать в любой точке пространства, не изменяя модуля и направления, что соответствует возможности переноса пары сил в любую параллельную плоскость.
Момент пары сил относительно оси. Поскольку момент пары сил — вектор «свободный», то всегда пару сил, заданную векгором-момента,
можно расположить так, чтобы одна из сил пары (-^) пересекала заданную ось в произвольной точке О (рис. 1.66). Тогда момент
пары сил будет равен моменту силы Р относительно точки О:
Рис. 1.ББ. К определению момента пары сил относительно оси
Момент пары сил относительно оси определяют как проекцию на эту ось вектора-момента силы F относительно точки О, или, что то же самое, как проекцию вектора-момента пары сил m(F,-F) на эту ось:
Некоторые примеры пространственных связей:
? сферический шарнир (рис. 1.67) позволяет осуществлять поворот вокруг точки в любом направлении. Поэтому, отбрасывая такую связь, нужно приложить силу /V, которая проходит через центр шарнира и неизвестна по величине и направлению в пространстве. Разлагая эту силу по направлениям трех координатных осей, получим три неизвестные реакции: ХА, Ya, Za;
Рис. 1.Б7. Сферический шарнир и схематическое изображение его реакций
? подшипник скольжения позволяет реализовать поворот вокруг своей оси и допускает свободу перемещения вдоль этой оси. Предполагая, что размер 8 очень мал и реактивными моментами относительно осей х и у можно пренебречь, получим одну неизвестную по величине и направлению реактивную силу NА или две неизвестные реакции: ХА, УА (рис. 1.68);
Рис. 1.Б8. Реакции подшипника со свободной осью
? подпятник (рис. 1.69) в отличие от подшипника позволяет осуществлять поворот вокруг своей оси, нс допуская перемещения вдоль нее, и имеет три неизвестные реакции: XА, ?Л, Z/1;
? глухая пространственная заделка (рис. 1.70). Поскольку при отбрасывании такой связи возникает произвольная пространственная реактивная система сил, характеризуемая главным вектором /? неизвестной величины и направления и главным моментом, например, относительно центра заделки А, также неизвестным по величине и направлению, то представим каждый из этих векторов в виде компонентов по осям: Я = XА + УА + 2 А; МА = тАХ + тАУ + тАг.
Рис. 1.70. Реакции глухой пространственной заделки
Делаем вывод, что глухая пространственная заделка имеет шесть неизвестных реакций — три составляющих силы и три момента относительно осей, величины которых равны соответствующим проекциям сил и моментов на координатные оси: XА, Ул 2А, тАХ; тАУтА/.
Решение задач. При решении задач на равновесие пространственной системы сил весьма существенным является составление уравнений, которые можно решить простым способом. Для этих целей оси, относительно которых составляют уравнения моментов, следует выбирать так, чтобы они пересекли как можно больше неизвестных сил или были им параллельны. Желательно направлять оси проекций так, чтобы отдельные неизвестные были им перпендикулярны.
При затруднениях, возникающих в процессе определения момента силы относительно осей, следует заменить отдельные силы эквивалентными совокупностями двух сил, для которых вычисления упрощаются. В ряде случаев полезно отображать проекции рассматриваемой системы на координатные плоскости.
Заметим, опуская доказательства, что подобно тому, как это было в плоской системе сил, составляя уравнения равновесия для пространственной системы сил, можно увеличивать число уравнений моментов относительно осей вплоть до шести, соблюдая некоторые ограничения, накладываемые на направление осей, такие, чтобы уравнения моментов были бы линейно независимы.
Задача 1.3. Прямоугольная плита, опертая в точке В на сферический
шарнир и закрепленная в точках А и С с помощью стержней, поддер-
живается в равновесии нитью, как показано на рис. 1.71. Определить реакции связей плиты ЛВС.
Рис. 1.71. Равновесие тела под действием пространственной системы сил
Д а н о: G, т, Za, Z(3 = л/4.
Выбирая начало координат в точке В, выразим составляющие пространственно ориентированной реактивной силы Т по оси z и плоскости Вху:
Условия равновесия для данной системы будут представлять систему последовательно решаемых уравнений, которые запишем, опуская пределы суммирования, в виде:
Лекция по технической иеханике на тему «Пространственная система сил»
При пользовании «Инфоуроком» вам не нужно платить за интернет!
Минкомсвязь РФ: «Инфоурок» включен в перечень социально значимых ресурсов .
Тема: Пространственная система сил
Знать момент силы относительно оси, свойства момента, аналитический способ определения равнодействующей, условия равновесия пространственной системы сил.
Уметь выполнять разложение силы на три взаимно перпендикулярные оси, определять момент силы относительно оси.
Пространственная система сил — система сил, линии действия которых не лежат в одной плоскости.
Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 1.5.1а).
а — расстояние от оси до проекции F ;
пр F — проекция силы на плоскость, перпендикулярную оси ОО.
Момент считаем положительным, если сила разворачивает тело по часовой стрелке. Смотреть со стороны положительного направления оси.
Если линия действия силы пересекает ось или линия действия силы параллельна оси, моменты силы относительно этой оси равны нулю (рис. 1.5.1б).
Силы и ось лежат в одной плоскости, они не смогут повернуть гело вокруг этой оси.
Пространственная сходящаяся система сил
Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно перпендикулярные оси координат. Проекции вектора образуют ребра тор силы совпадает с диагональю (рис.1.5.2).
Модуль вектора может быть получен из зависимости
Пространственная сходящаяся система сил
Пространственная сходящаяся система сил — система сил, не лежащих в одной плоскости, линии действия которых пересекаются в одной точке.
Равнодействующую пространственной системы сил можно определить, построив пространственный многоугольник (рис.1.5.3), = F 1 + F 2 + F 3 +…+ F n
Доказано, что равнодействующая системы сходящихся сил приложена в точке пересечения линий действия сил системы.
Модуль равнодействующей пространственной системы сходя- 1 Чихся сил можно определить аналитически, использовав метод проекций.
Совмещаем начало координат с точкой пересечения линий действия сил системы. Проецируем все силы на оси координат и суммируем соответствующие проекции (рис.1.5.4). Получим проекции равнодействующей на оси координат:
Рисунок 1.5.3 Рисунок 1.5.4
Модуль равнодействующей системы сходящихся сил определим
по формуле
Направление вектора равнодействующей определяется углами
Произвольная пространственная система сил
Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 1.5.5а). Приведем ее к центру О.
Силы необходимо параллельно перемещать, при этом образуется система пар сил. Момент каждой из этих пар равен произведению модуля силы на расстояние до центра приведения.
В центре приведения возникает пучок сил, который может быть заменен суммарной силой (главный вектор) F гл (рис. 1.5.5б).
Моменты пар сил можно сложить, получив суммарный момент системы М гл (главный момент).
Таким образом, произвольная пространственная система сил приводится к главному вектору и главному моменту.
Главный вектор принято раскладывать на три составляющие, направленные вдоль осей координат (рис. 1.5.5в).
Обычно суммарный момент раскладывают на составляющие: три момента относительно осей координат.
Абсолютное значение главного вектора (рис. 1.5.5б) равно
Абсолютное значение главного момента определяется по формуле
Уравнения равновесия пространственной системы сил
При равновесии F гл = 0; М гл = 0. Получаем шесть уравнений равновесия:
Шесть уравнений равновесия пространственной системы сил соответствуют шести независимым возможным перемещениям тела в пространстве: трем перемещениям вдоль координатных осей и трем вращениям вокруг этих осей.
Примеры решения задач
Пример 1. На тело в форме куба с ребром а = 10 см действуют три силы
(рис.1.5.6). Определить моменты сил относительно осей координат, совпадающих с ребрами куба.
Момент силы относительно оси О x :
Момент силы относительно оси О y :
Момент силы относительно оси О z
Пример 2. На горизонтальном валу закреплены два колеса, r 1 = 0,4м; r 2 = 0,8м. Остальные размеры — на рис. 1.5.7. К колесу 1 приложена сила F 1 , к колесу 2 — силы F 2 = 12 кН, F 3 = 4кН.
Определить силу F 1 и реакции в шарнирах А и В в состоянии равновесия.
Напомним:
1. При равновесии выполняются шесть уравнений равновесия.
Уравнения моментов следует составлять относительно опор А и В.
Моменты этих сил относительно соответствующих осей равны нулю.
3. Расчет следует завершить Рисунок 1.5.7
проверкой, использовав дополнительные уравнения равновесия.
1. Определяем силу F 1 , составив уравнение моментов сил относительно оси О z :
2. Определяем реакции в опоре А. На опоре действуют две составляющие реакции (У А ;Х А ).
Составляем уравнение моментов сил относительно оси Ох’ (в
опоре В). ч
Поворот вокруг оси Ох’ не происходит:
Знак «минус» означает, что реакция направлена в противоположную сторону.
Поворот вокруг оси Оу’ не происходит, составляем уравнение моментов сил относительно оси Оу’ (в опоре В):
3. Определяем реакции в опоре В. На опоре действуют две составляющие реакции (ХВ , Y в). Составляем уравнение моментов сил относительно оси Ох (опора А):
Составляем уравнение моментов относительно оси Оу (опора А):
4. Проверка. Используем уравнения проекций
Расчет выполнен верно.
Контрольные вопросы и задания
1. Запишите формулы для расчета главного вектора пространственной системы сходящихся сил.
2. Запишите формулу для расчета главного вектора пространственной системы произвольно расположенных сил.
3. Запишите формулу для расчета главного момента пространственной системы сил.
4. Запишите систему уравнений равновесия пространственной системы сил.
5. Какое из уравнений равновесия нужно использовать для определения реакции стержня R 1г (рис. 1.5.8)?
6. Определите главный момент системы сил (рис. 1.5.9). Точка приведения — начало координат. Координатные оси совпадают с ребрами куба, ребро куба равно 20 см; F 1 = 20 кН; F 2 =30 кН.
Рисунок 1.5.9 Рисунок 1.5.10
7. Определите реакцию Х B (рис. 1.5.10). Вертикальная ось со шкивом нагружена двумя горизонтальными силами. Силы F 1 и F 2 параллельны оси Ох. АО = 0,3 м; ОБ = 0,5 м; F 1 = 2 кН; F 2 = 3,5 кН.
Рекомендация. Составить уравнение моментов относительно оси Оу’ в точке А.