Strong-stuff.ru

Образование Онлайн
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диссоциация онлайн решение

Электролитическая диссоциация

Водные растворы некоторых веществ являются проводниками электрического тока. Эти вещества относятся к электролитам. Электролитами являются кислоты, основания и соли, расплавы некоторых веществ.

Растворы некоторых веществ в воде не проводят электрический ток. Такие вещества называют неэлектролитами. К ним относятся многие органические соединения, например сахар и спирты.

Теория электролитической диссоциации

Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887 г.). Основные положения теории С. Аррениуса:

— электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы;

— под действием электрического тока положительно заряженные ионы движутся к катоду (катионы), а отрицательно заряженные – к аноду (анионы);

— диссоциация – обратимый процесс

Механизм электролитической диссоциации заключается в ион-дипольном взаимодействии между ионами и диполями воды (рис. 1).

Рис. 1. Электролитическая диссоциация раствора хлорида натрия

Легче всего диссоциируют вещества с ионной связью. Аналогично диссоциация протекает у молекул, образованных по типу полярной ковалентной связи (характер взаимодействия – диполь-дипольный).

Диссоциация кислот, оснований, солей

При диссоциации кислот всегда образуются ионы водорода (H + ), а точнее – гидроксония (H3O + ), которые отвечают за свойства кислот (кислый вкус, действие индикаторов, взаимодействие с основаниями и т.д.).

При диссоциации оснований всегда образуются гидроксид-ионы водорода (OH − ), ответственные за свойства оснований (изменение окраски индикаторов, взаимодействие с кислотами и т.д.).

Соли – это электролиты, при диссоциации которых образуются катионы металлов (или катион аммония NH4 + ) и анионы кислотных остатков.

Многоосновные кислоты и основания диссоциируют ступенчато.

HSO4 − ↔ H + + SO4 2- (II ступень)

Ca(OH)2 ↔ [CaOH] + + OH − (I ступень)

[CaOH] + ↔ Ca 2+ + OH −

Степень диссоциации

Среди электролитов различают слабые и сильные растворы. Чтобы охарактеризовать эту меру существует понятие и величина степени диссоциации (). Степень диссоциации – отношение числа молекул, продиссоциировавших на ионы к общему числу молекул. часто выражают в %.

= N’ / N

К слабым электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации меньше 3%. К сильным электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации больше 3%. Растворы сильных электролитов не содержат непродиссоциировавших молекул, а процесс ассоциации (объединения) приводит к образованию гидратированных ионов и ионных пар.

На степень диссоциации оказывают особое влияние природа растворителя, природа растворенного вещества, температура (у сильных электролитов с повышением температуры степень диссоциации снижается, а у слабых – проходит через максимум в области температур 60 o С), концентрация растворов, введение в раствор одноименных ионов.

Амфотерные электролиты

Существуют электролиты, которые при диссоциации образуют и H + , и OH − ионы. Такие электролиты называют амфотерными, например: Be(OH)2, Zn(OH)2, Sn(OH)2, Al(OH)3, Cr(OH)3 и т.д.

H + +RO − ↔ ROH ↔ R + + OH −

Ионные уравнения реакций

Реакции в водных растворах электролитов – это реакции между ионами – ионные реакции, которые записывают с помощью ионных уравнений в молекулярной, полной ионной и сокращенной ионной формах. Например:

Ba 2+ + SO4 2- = BaSO4 ↓ (сокращенная ионная форма)

Водородный показатель pH

Вода – слабый электролит, поэтому процесс диссоциации протекает в незначительной степени.

К любому равновесию можно применить закон действующих масс и записать выражение для константы равновесия:

Равновесная концентрация воды – величина постоянная, слеовательно.

Кислотность (основность) водного раствора удобно выражать через десятичный логарифм молярной концентрации ионов водорода, взятый с обратным знаком. Эта величина называется водородным показателем (рН):

Если раствор нейтральный, то [H + ]=[OH − ] =10 -7 , рН =7.

Если среда кислая [H + ] > 10 -7 , рН + ] -7 , рН > 7

Электролитическая диссоциация

Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещества относят к неэлектролитам. Ими являются, например, газ азот N2, жидкость хлороформ CHCl3, твердое вещество сахароза C12H22O11, которые в водном растворе существуют в виде гидратов этих молекул.
известно много веществ (в общем виде МА), которые после растворения в воде и образования гидратов молекул МА nH2O претерпевают существенные формульные изменения. В результате в растворе появляются гидратированные ионы – катионы М + * nH2O и анионы А * nH2O:
МА * nH2O → М + * nH2O + А — * nH2O
Такие вещества относятся к электролитам.
Процесс появления гидратированных ионов в водном растворе называется электролитической диссоциацией (С. Аррениус 1887).
Электролитическая диссоциация ионных кристаллических веществ (М + )(А — ) в воде является необратимой реакцией:
(М + )(А — )(т) →(М + )(А — )(р) =(М + )(р) + (А — )(р)
Такие вещества относятся к сильным электролитам, ими являются многие основания и соли, например:

NaOH = Na + + OH — K2SO4 = 2K + + SO4
Ba(OH)2 = Ba 2+ + 2OH — Na2 = 2Na + + S 2-
Электролитическая диссоциация вещества МА, состоящих из полярных ковалентных молекул, является обратимой реакцией:
(М-А)(г,ж,т) → (М-А)(р) ↔ М + (р) А — (р)
такие вещества относят к слабым электролитам, ими являются многие кислоты и некоторые основания, например:
а) HNO2 ↔ H + + NO 2-
б) CH3COOH ↔ H + + CH3COO —
в) H2CO3 ↔ H + + HCO3 — (первая ступень)
HCO3 — ↔ H + + CO3 2- (вторая ступень)
г) NH3 * H2O ↔ NH4 + OH —
В разбавленных водных растворах слабых электролитов мы всегда обнаружим как исходные молекулы, так и продукты их диссоциации – гидратированные ионы.
Качественная характеристика диссоциации электролитов называется степенью диссоциации и обозначается ɑ 1 , всегда ɑ › 0.
Для сильных электролитов ɑ = 1 по определению (диссоциация таких электролитов полная).
Для слабых электролитов степень диссоциации – отношение малярной концентрации продиссоциировавшего вещества (сд) к общей концентрации вещества в растворе (с):

Степень диссоциации – это доля единицы от 100%. Для слабых электролитов ɑ ˂ С 1 (100%). Для слабых кислот HnA степень диссоциации по каждой следующей ступени резко уменьшается по сравнению с предыдущей:
H3PO4 ↔ H + + H2PO4 — = 23,5%
H2PO4 — ↔ H + + HPO4 2- = 3*10 -4 %
HPO4 2- ↔ H + + PO4 3- = 2*10 -9 %
Степень диссоциации зависит от природы и концентрации электролита, а также от температуры раствора; она растет при уменьшении концентрации вещества в растворе (т.е. при разбавлении раствора) при нагревании.
В разбавленных растворах сильных кислот HnA их гидротионы Hn-1A не существуют, например:
H2SO4 = H + + [HSO4 — ] ( 1 → 1)
[HSO4 — ] = H + + SO4 -2 ( 1 → 1)
В итоге: H2SO4(разб.) = 2H + + SO4 -2
в концентрированных растворах содержание гидроанионов (и даже исходных молекул) становятся заметными:
H2SO4(конц.) ↔ H + + HSO4 — ( 1 ˂ 1)
HSO4 — ↔ H + + SO4 2- ( 2 ˂ 1 ˂ 1)
(суммировать уравнения стадий обратимой диссоциации нельзя!). При нагревании значения 1 и 2 возрастают, что способствует протеканию реакций с участием концентрированных кислот.
Кислоты — это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных анионов не образуют:
* буквой обозначают степень протекания любых обратимых реакций, в том числе и степень гидролиза.
H2SO4 = 2H + = SO4 2- , HF ↔ H + + F —
Распространенные сильные кислоты:
Кислородсодержащие кислоты

Бескислородные кислоты
HCl, HBr, HI, HNCS
В разбавленном водном растворе (условно до 10%-ного или 0,1-молярного) эти кислоты диссоциируют полностью. Для сильных кислот HnA в список вошли их гидротионы (анионы кислых солей), также диссоциирующие полностью в этих условиях.
Распространенные слабые кислоты:
Кислородсодержащие кислоты

Бескислородные кислоты
Основание – это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют:
KOH = K + + OH — , Ca(OH)2 = Ca 2+ + 2OH —
Диссоциация малорастворимых оснований Mg(OH)2, Cu(OH)2, Mn(OH)2, Fe(OH)2 и других практического значения не имеет.
К сильным основаниям (щелочам) относятся NaOH, KOH, Ba(OH)2 некоторые другие. Самым известным слабым основанием является гидрат аммиака NH3 H2O.
Средние соли – это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме H + , и любые анионы, кроме OH:
Cu(NO3)2 = Cu 2+ + 2NO3
Al2(SO4)3 =2Al 3+ + 3SO4 2-
Na(CH3COO) = Na + + CH3COO —
BaCl2 = Ba 2+ + 2Cl
K2S = 2K + + S 2-
Mg(CN)2 = Mg 2+ + 2CN —
речь идет не только о хорошо растворимых солях. Диссоциация малорастворимых и практически нерастворимых солей значения не имеет.
Аналогично диссоциируют двойные соли:
KAl(SO4)2 = K + + Al 3+ + 2SO4 2-
Fe(NH4)2(SO4)2 = Fe 2+ + 2NH4 + 2SO4 2-
Кислые соли (большинство из них растворимы в воде) диссоциируют полностью по типу средних солей:
KHSO4 = K + + HSO4
KHCr2O7 = K + + HCr2O7
KH2PO4 = K + + H2PO4
NaHCO3 = Na + + HCO3
Образующиеся гидроанионы подвергаются, в свою очередь, воздействию воды:
а) если гидроанион принадлежит сильной кислоте, то он и сам диссоциирует также полностью:
HSO4 — = H + + HSO4 2- , HCr2O7 — = H + + Cr2O7 2-
и полное уравнение реакции диссоциации запишется в виде:
KHSO4 = K + + H + + SO4 2-
KHCr2O7 = K + + H + Cr2O7 2-
(растворы этих солей обязательно будут кислыми, как и растворы соответствующих кислот);
б) если гидротион принадлежит слабой кислоте, то его поведение в воде двойственно – либо неполная диссоциация по типу слабой кислоты:
H2PO4 — ↔ H + + HPO4 2- ( 1)
HCO3 — ↔ H + CO3 2- ( 1)

Читать еще:  Обучение электрика онлайн

Либо взаимодействие с водой (называемым обратимым гидролизом):
H2PO4 — + H2O ↔ H3PO4 + OH — ( 2)
HCO3 — + H2O ↔ H2CO3 + OH — ( 2)
При 1 2 преобладает диссоциация (и раствор будет кислым), а при 1 2 – гидролиз (и раствор соли будет щелочным). Так, кислыми будут растворы солей с анионами HSO3 — , H2PO4 — , H2AsO4 — и HSeO3, растворы солей с другими анионами (их большинство) будут щелочными. Другими словами, название «кислые» для солей с большинством гидроанионов не предполагает, что эти анионы будут вести себя в растворе как кислоты (гидролиз гидроанионов и расчет отношения между 1 и 2 изучаются только в высшей школе)

Основные соли MgCl(OH), CuCO3(OH)2 и другие в своем большинстве практически нерастворимы в воде, и обсуждать их поведение в водном растворе невозможно.

CHEMEGE.RU

Подготовка к ЕГЭ по химии и олимпиадам

Теория электролитической диссоциации

Темы кодификатора ЕГЭ: Электролитическая диссоциация электролитов вводных растворах. Сильные и слабые электролиты.

Электролиты – это вещества, растворы и расплавы которых проводят электрический ток.

Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. Таким образом, в растворах или расплавах электролитов есть заряженные частицы. В растворах электролитов, как правило, электрическая проводимость обусловлена наличием ионов.

Ионы – это заряженные частицы (атомы или группы атомов). Разделяют положительно заряженные ионы (катионы) и отрицательно заряженные ионы (анионы).

Электролитическая диссоциация — это процесс распада электролита на ионы при его растворении или плавлении.

Разделяют вещества — электролиты и неэлектролиты. К неэлектролитам относятся вещества с прочной ковалентной неполярной связью (простые вещества), все оксиды (которые химически не взаимодействуют с водой), большинство органических веществ (кроме полярных соединений — карбоновых кислот, их солей, фенолов) — альдегиды, кетоны, углеводороды, углеводы.

К электролитам относят некоторые вещества с ковалентной полярной связью и вещества с ионной кристаллической решеткой.

В чем же суть процесса электролитической диссоциации?

Поместим в пробирку несколько кристаллов хлорида натрия и добавим воду. Через некоторое время кристаллы растворятся. Что произошло?
Хлорид натрия – вещество с ионной кристаллической решеткой. Кристалл NaCl состоит из ионов Na + и Cl — . В воде этот кристалл распадается на структурные единицы-ионы. При этом распадаются ионные химические связи и некоторые водородные связи между молекулами воды. Попавшие в воду ионы Na + и Cl — вступают во взаимодействие с молекулами воды. В случае хлорид-ионов можно говорить про электростатическое притяжение дипольных (полярных) молекул воды к аниону хлора, а в случае катионов натрия оно приближается по своей природе к донорно-акцепторному (когда электронная пара атома кислорода помещается на вакантные орбитали иона натрия). Окруженные молекулами воды ионы покрываются гидратной оболочкой. Диссоциация хлорида натрия описывается уравнением:

NaCl = Na + + Cl –

При растворении в воде соединений с ковалентной полярной связью, молекулы воды, окружив полярную молекулу, сначала растягивают связь в ней, увеличивая её полярность, затем разрывают её на ионы, которые гидратируются и равномерно распределяются в растворе. Например, соляная ксилота диссоциирует на ионы так: HCl = H + + Cl — .

При расплавлении, когда происходит нагревание кристалла, ионы начинают совершать интенсивные колебания в узлах кристаллической решётки, в результате чего она разрушается, образуется расплав, который состоит из ионов.

Процесс электролитической диссоциации характеризуется величиной степени диссоциации молекул вещества:

Степень диссоциации — это отношение числа продиссоциировавших (распавшихся) молекул к общему числу молекул электролита. Т.е., какая доля молекул исходного вещества распадается в растворе или расплаве на ионы.

Nпродисс — это число продиссоциировавших молекул,

Nисх — это исходное число молекул.

По степени диссоциации электролиты делят на делят на сильные и слабые.

Сильные электролиты (α≈1):

1. Все растворимые соли (в том числе соли органических кислот — ацетат калия CH3COOK, формиат натрия HCOONa и др.)

2. Сильные кислоты: HCl, HI, HBr, HNO3, H2SO4 (по первой ступени), HClO4 и др.;

3. Щелочи: NaOH, KOH, LiOH, RbOH, CsOH; Ca(OH)2, Sr(OH)2, Ba(OH)2.

Сильные электролиты распадаются на ионы практически полностью в водных растворах, но только в ненасыщенных. В насыщенных растворах даже сильные электролиты могут распадаться только частично. Т.е. степень диссоциации сильных электролитов α приблизительно равна 1 только для ненасыщенных растворов веществ. В насыщенных или концентрированны растворах степень диссоциации сильных электролитов может быть меньше или равна 1: α≤1.

Слабые электролиты (α + и PO4 3– :

Диссоциация слабых электролитов : многоосновных кислот и многокислотных оснований происходит ступенчато и обратимо. Т.е. при диссоциации слабых электролитов распадается на ионы только очень небольшая часть исходных частиц. Например, угольная кислота:

HCO3 – ↔ H + + CO3 2–

Гидроксид магния диссоциирует также в 2 ступени:

Mg(OH)2 ⇄ Mg(OH) + OH –

Mg(OH) + ⇄ Mg 2+ + OH –

Кислые соли диссоциируют также ступенчато, сначала разрываются ионные связи, затем — ковалентные полярные. Например, гидрокабонат калия и гидроксохлорид магния:

KHCO3 ⇄ K + + HCO3 – (α=1)

HCO3 – ⇄ H + + CO3 2– (α + + Cl – (α=1)

MgOH + ⇄ Mg 2+ + OH – (α + + S 2– , при полном распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не получится никак;

б) Ba(ClO3)2 ⇄ Ba 2+ + 2ClO3 , опять при распаде 1 моль соли образуется 3 моль ионов, больше 3 моль ионов не образуется никак;

в) NH4NO3 ⇄ NH4 + + NO3 , при распаде 1 моль нитрата аммония образуется 2 моль ионов максимально, больше 2 моль ионов не образуется никак;

г) Fe(NO3)3 ⇄ Fe 3+ + 3NO3 , при полном распаде 1 моль нитрата железа (III) образуется 4 моль ионов. Следовательно, при неполном распаде 1 моль нитрата железа возможно образование меньшего числа ионов (неполный распад возможен в насыщенном растворе соли). Следовательно, вариант 4 нам подходит.

Электролитическая диссоциация: решение задач

Теоретический материал приведен на страницах:

Освежим в памяти основные моменты, которые необходимы при решении задач.

Степень диссоциации (α) — отношение кол-ва молекул, которые распались на ионы (N’), к общему кол-ву растворенных молекул (N):

  • α=0 — диссоциация отсутствует;
  • α=0-3% — слабые электролиты — слабые кислоты (H2SO3, H2S, H2SiO3), слабые основания;
  • α=3%-30% — средние электролиты;
  • α=30%-100% — сильные электролиты — соли, сильные кислоты (HCl, HBr, HNO3, H2SO4(разб.)), некоторые основания (LiOH, KOH, NaOH);
  • α=100% — полная диссоциация.
Читать еще:  Онлайн курсы по геометрии 8 класс

Степень диссоциации зависит от концентрации раствора.

Константа диссоциации электролита (K) — количественная характеристика диссоциации — отношение произведений концентрации ионов, образованных при диссоциации, к концентрации исходных частиц. Для электролита АВ, который диссоциирует по уравнению АВ↔A — +B + :

Константра диссоциации не зависит от концентрации веществ и может колебаться в очень ширком диапазоне — от 10 -16 до 10 15 .

Степень и константа диссоциации связаны между собой соотношением, называемым Законом разведения Оствальда:

Для слабых электролитов:

Диссоциация воды и её константа диссоциации:

Поскольку вода является очень слабым электролитом, то концентрация [H2O] является практически неизменной, поэтому, остаётся постоянной и константа диссоциации воды (ионное произведение воды):

Для чистой воды:

На практике пользуются водородным показателем pH=-lg[H + ]:

  • pH=7 — нейтральная среда;
  • pH 7 — щелочная среда.

Диссоциация кислот и оснований

Константа диссоциации одноосновных кислот (Ka-кислотный тип диссоциации; А — -кислотный остаток):

Многоосновные кислоты диссоциируют в несколько стадий, у каждой из которых своя константа диссоциации.

Константа диссоциации оснований обозначается Kb.

Диссоциация малорастворимых веществ

Константа диссоциации малорастворимых веществ называется произведением растворимости (ПР).

При наличии в растворе нескольких электролитов они диссоциируют в сторону образования: 1) осадков; 2) газов; 3) слабых электролитов.

Взаимодействие солей с водой с образованием кислой и основной соли называется гидролизом.

Примеры решения задач

Пример 1 . Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона водорода (H + ) с гидроксид-ионом (OH — ).

  • ион водорода реагирует с гидроксид-ионом с образованием молекулы воды (реакция нейтрализации):
  • ионы водорода образуются при диссоциации сильных кислот (HCl);
  • гидроксид-ионы образуются при диссоциации сильных оснований (NaOH);

Пример 2 . Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона водорода с карбонат-ионом.

  • карбонат-ионы реагируют с ионами водорода с образованием гидрокарбонат-ионов (реакция протекает при недостатке ионов водорода):
  • второй вариант данной реакции — образование неустойчивой угольной кислоты, распадающейся на воду и оксид углерода (протекает при избытке ионов водорода):
  • Молекулярные уравнения реакций:

Пример 3 . Написать молекулярное уравнение, соответствующее ионному уравнению взаимодействия иона серебра с гидроксид-ионом.

  • ион серебра реагирует с гидроксид-ионом с образованием неустойчивого соединения гидроксида серебра, распадающегося на воду и оксид серебра:
  • ионы серебра образуются при диссоциации растворимых солей серебра (AgNO3);
  • гидроксид-ионы образуются при диссоциации сильных оснований (NaOH);

Пример 4 . При взаимодействии каких растворов получится карбонат кальция (CaCO3)?

Из таблицы растворимости видно, что карбонат кальция нерастворим в воде.

  • Сокращенное ионное уравнение для получения CaCO3 будет иметь следующий вид:
  • Для решения задачи подойдет любое растворимое соединение кальция, которое будет диссоциировать с образованием ионов Ca 2+ , например, хлорид или нитрат кальция — CaCl2 или Ca(NO3)2;
  • В качестве донора ионов CO3 2- сойдет любой растворимый в воде карбонат, например, Na2CO3 или K2CO3;
  • Один из вариантов молекулярного уравнения:

Пример 5 . Растворы каких солей нужны для получения:

Пример 6 . Какие вещества образуются при взаимодействии растворов сульфата натрия (Na2SO4) и хлорида бария (BaCl2)?

  • Из таблицы растворимости видно, что обе соли растворимы в воде:
  • При слиянии растворов образуются катионы натрия и бария и анионы хлора и оксида серы. Из таблицы растворимости видно, что нерастворимую в воде соль даст сочетание Ba 2+ и SO4 2- :
  • Уравнение реакции будет иметь вид:

Пример 7 . Какая соль выпадет в осадок при взаимодействии нитрата серебра (AgNO3) и хлорида кальция (CaCl2)? Написать уравнение реакции.

Пример 8 . Каким образом можно очистить поваренную соль (NaCl) от сульфата натрия (Na2SO4)?

Идея решения задачи заключается в добавлении в раствор поваренной соли и сульфата натрия вещества, способного распадаться на ионы, которые свяжут ионы оксида серы в нерастворимую соль, высвободив тем самым ионы натрия.

Роль связывающего вещества выполнит хлорид кальция CaCl2.

После того, как CaSO4↓ выпадет в осадок, полученный раствор необходимо будет отфильтровать, после чего в фильтрате будет присутствовать чистая поваренная соль.

Пример 9 . Написать молекулярное и ионное уравнение реакции хлорида алюминия с нитратом серебра.

  • Молекулярное уравнение:
  • Полное ионное уравнение:
  • Сокращенное ионное уравнение:

Пример 10 . Рассчитать концентрацию ионов, образующихся при смешении 1 литра 0,25М раствора BaCl2 и 1 литра 0,5М раствора Na2SO4, после выпадения BaSO4 в осадок.

  • Молекулярное уравнение реакции:
  • Сокращенное ионное уравнение:
  • Рассчитаем исходные кол-ва ионов:
  • (Ba 2+ ) в обменной реакции присутствует в недостатке, поэтому, в реакцию вступает не 0,5, а только 0,25 SO4 2- ;
  • Объем полученного раствора 1+1=2 литра;
  • Рассчитаем молярные концентрации ионов:

Пример 11 . Рассчитать pH водного раствора 0,1М HCl; 0,1M NaOH.

  • HCl — сильная кислота, диссоциирует полностью, уравнение диссоциации:
  • NaOH — сильное основание, диссоциирует полностью, уравнение диссоциации:

Пример 12 . Рассчитать концентрацию ионов водорода в растворе аммиака с концентрацией 1,5 моль/л (K=1,7·10 -5 ).

  • Формула равновесия, установленного в водном растворе аммиака:
  • Обозначим через x равновесную концентрацию [OH — ]; тогда [NH4 + ]=x; [NH3]=1,5-x:

Пример 13 . Какое кол-во осадка образуется при смешении 250 мл растворов нитрита лития (концентрация 0,3 моль/л) и фторида натрия (0,2 моль/л), если произведение растворимости фторида лития ПР(LiF)=1,5·10 -3 .

  • Уравнение реакции:
  • Рассчитаем исходные кол-ва ионов:
  • Объем раствора равен 0,25+0,25=0,5 л
  • Если обозначить через x моль кол-во выпавшего осадка LiF, тогда произведение концентрации ионов в растворе будет равно:
  • Масса выпавшего осадка:

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Электролитическая диссоциация. Реакции ионного обмена

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

В ходе урока мы изучим тему «Электролитическая диссоциация. Реакции ионного обмена». Рассмотрим теорию электролитической диссоциации и познакомимся с определением электролитов. Познакомимся с физической и химической теорией растворов. Рассмотрим в свете теории электролитической диссоциации определение оснований, кислот и солей, а также научимся составлять уравнения реакций ионного обмена и узнаем об условиях их необратимости.

Тема: Растворы и их концентрация, дисперсные системы, электролитическая диссоциация

Урок: Электролитическая диссоциация. Реакции ионного обмена

Физическая и химическая теория растворов

Еще на заре изучения электрических явлений ученые заметили, что ток могут проводить не только металлы, но и растворы. Но не всякие. Так, водные растворы поваренной соли и других солей, растворы сильных кислот и щелочей хорошо проводят ток. Растворы уксусной кислоты, углекислого и сернистого газа проводят его намного хуже. А вот растворы спирта, сахара и большинства других органических соединений вовсе не проводят электрический ток.

Электрический ток – это направленное движение свободных заряженных частиц. В металлах такое движение осуществляется за счет относительно свободных электронов, электронного газа. Но не только металлы способны проводить электрический ток.

Электролиты это вещества, растворы или расплавы которых проводят электрический ток.

Неэлектролиты это вещества, растворы или расплавы которых не проводят электрический ток.

Для описания электропроводности некоторых растворов необходимо понимать, что такое раствор. К концу XIX века существовало 2 основных теории растворов:

· Физическая. Согласно этой теории, раствор это чисто механическая смесь компонентов, и никакого взаимодействия между частицами в нем нет. Она хорошо описывала свойства электролитов, но имела определенные сложности в описании растворов электролитов.

· Химическая. Согласно этой теории, при растворении происходит химическая реакция между растворяемым веществом и растворителем. Это подтверждается наличием теплового эффекта при растворении, а также изменением цвета. Например, при растворении белого безводного сульфата меди образуется насыщенный синий раствор.

Истина оказалась между двумя этими крайними точками. А именно, в растворах протекает и химический и физический процесс.

Рис. 1. Сванте Аррениус

В 1887 году шведский физико — химик Сванте Аррениус (Рис. 1), исследуя электропроводность водных растворов, высказал предположение, что в таких растворах вещества распадаются на заряженные частицы – ионы, которые могут передвигаться к электродам – отрицательно заряженному катоду и положительно заряженному аноду.

Читать еще:  Онлайн обучение по прическам

Это и есть причина электрического тока в растворах. Данный процесс получил название электролитической диссоциации (дословный перевод – расщепление, разложение под действием электричества). Такое название также предполагает, что диссоциация происходит под действием электрического тока. Дальнейшие исследования показали, что это не так: ионы являются только переносчиками зарядов в растворе и существуют в нем независимо от того, проходит через раствор ток или нет. При активном участии Сванте Аррениуса была сформулирована теория электролитической диссоциации, которую часто называют в честь этого ученого. Основная идея данной теории заключается в том, что электролиты под действием растворителя самопроизвольно распадаются на ионы. И именно эти ионы являются носителями заряда и отвечают за электропроводность раствора.

2. Основные положения теории электролитической диссоциации

1. Электролиты в растворах под действием растворителя самопроизвольно распадаются на ионы. Такой процесс называется электролитической диссоциацией. Диссоциация также может проходить при расплавлении твердых электролитов.

2. Ионы отличаются от атомов по составу и свойствам. В водных растворах ионы находятся в гидратированном состоянии. Ионы в гидратированном состоянии отличаются по свойствам от ионов в газообразном состоянии вещества. Это объясняется так: в ионных соединениях уже изначально присутствуют катионы и анионы. При растворении молекула воды начинает подходить к заряженным ионам: положительным полюсом к отрицательному иону, отрицательным полюсом к положительному. Ионы называются гидратированными (рис. 2).

3. В растворах или расплавах электролитов ионы движутся хаотично, но при пропускании электрического тока ионы движутся направленно: катионы – к катоду, анионы к аноду.

Основания, кислоты, соли в свете теории электролитической диссоциации

В свете теории электролитической диссоциации можно дать определении основаниям, кислотам и солям как электролитам.

Основания – это электролиты, в результате диссоциации которых в водных растворах образуется только один вид анионов: гидроксид-анион: OH — .

Диссоциация оснований, содержащих несколько гидроксильных групп, происходит ступенчато:

Ba(OH)2↔ Ba(ОН) + + OH − Первая ступень

Ba(OH) + ↔ Ba 2+ + OH − Вторая ступень

Ba(OH)2↔ Ba 2+ + 2 OH − Суммарное уравнение

Кислоты это электролиты, в результате диссоциации которых в водных растворах образуется только один вид катионов: H + . Ионом водорода называют именно гидратированный протон и обозначают H3O + , но для простоты записывают H + .

Многоосновные кислоты диссоциируют ступенчато:

HPO4 2- ↔ H + + PO4 3- Третья ступень

Соли это электролиты, диссоцирующие в водных растворах на катионы металла и анионы кислотного остатка.
Na2SO4 ↔ 2Na + + SO4 2−

Средние соли это электролиты, диссоциирующие в водных растворах на катионы металла или катионы аммония и анионы кислотного остатка.

Основные соли это электролиты, диссоциирующие в водных растворах на катионы металла, гидроксид анионы и анионы кислотного остатка.

Кислые соли это электролиты, диссоциирующие в водных растворах на катионы металла, катионы водорода и анионы кислотного остатка.

Двойные соли это электролиты, диссоциирующие в водных растворах на катионы нескольких металлов и анионы кислотного остатка.

Смешанные соли это электролиты, диссоциирующие в водных растворах на катионы металла и анионы нескольких кислотных остатков

Сильные и слабые электролиты

Электролитическая диссоциация в той или иной степени процесс обратимый. Но при растворении некоторых соединений равновесие диссоциации в значительной степени смещено в сторону диссоциируемой формы. В растворах таких электролитов диссоциация протекает практически необратимо. Поэтому при написании уравнений диссоциации таких веществ пишется или знак равенства или прямая стрелка, обозначающая, что реакция происходит практически необратимо. Такие вещества называют сильными электролитами.

Слабыми называются электролиты, в которых диссоциация происходит незначительно. При написании используют знак обратимости. Табл. 1.

Для количественной оценки силы электролита введено понятие степени электролитической диссоциации.

Силу электролита можно охарактеризовать и при помощи константы химического равновесия диссоциации. Называется она константа диссоциации.

Факторы, влияющие на степень электролитической диссоциации:

· Концентрация электролита в растворе

При увеличении температуры и разбавлении раствора степень электролитической диссоциации увеличивается. Поэтому оценить силу электролита можно, только сравнивания их при одинаковых условиях. За стандарт принята t = 18 0 С и с = 0,1 моль/л.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ

СЛАБЫЕ ЭЛЕКТРОЛИТЫ

Степень диссоциации при 18 0 С в растворах с концентрацией электролита 0,1 моль/л близка к 100%. Диссоциируют практически необратимо.

Степень диссоциации при 18 0 С в растворах с концентрацией электролита 0,1 моль/л значительно меньше 100%. Диссоцииация необратима.

· Некоторые неорганические кислоты (НNO3, HClO4,HI, HCl, HBr, H2SO4)

· Гидроксиды металлов, кроме IA и IIA групп, раствор аммиака

· Многие неорганические кислоты (H2S, HCN, HClO, HNO2)

· Органические кислоты (HCOOH, CH3COOH)

Реакции ионного обмена

Сущность реакции в растворах электролитов выражается ионным уравнением. В нем учитывается тот факт, что в одном растворе электролиты присутствуют в виде ионов. А слабые электролиты и недиссоциируемые вещества записываются в диссоциируемой на ионы форме. Растворимость электролита в воде нельзя использовать как критерий его силы. Многие нерастворимые в воде соли, являются сильными электролитами, но концентрация ионов в растворе оказывается очень низкой именно вследствие их низкой растворимости. Именно потому при написании уравнений реакций с участием таких веществ их принято записывать в недиссоциированной форме.

Реакции в растворах электролитов протекают в направлении связывания ионов.

Существует несколько форм связывания ионов:

1. Образование осадка

2. Выделение газа

3. Образование слабого электролита.

· 1. Образование осадка:

Ba 2+ +2Cl — + 2Na + +CO3 2- → BaCO3↓ + 2Na + +2Cl — полное ионное уравнение

Ba 2+ + CO3 2- → BaCO3↓ сокращенное ионное уравнение.

Сокращенное ионное уравнение показывает, что при взаимодействии любого растворимого соединения, содержащего ион Ba 2+ , с соединением, содержащим карбонат-анион CO3 2 — , в результате получится нерастворимый осадок BaCO3↓.

2Na + + CO3 2- +2H + + SO4 2 — → 2Na + + SO4 2 — + H2O + CO2↑ полное ионное уравнение

2H + + CO3 2- → H2O + CO2↑ сокращенное ионное уравнение.

· 3. Образование слабого электролита:

KOH + HBr → KBr + H2O

K + + OH — + H + + Br — → K + + Br — + H2O полное ионное уравнение

OH — + H + → H2O сокращенное ионное уравнение.

Рассматривая эти примеры, мы убедились, что все реакции в растворах электролитов происходят в направлении связывания ионов.

Подведение итога урока

В ходе урока мы рассмотрели теорию электролитической диссоциации и познакомились с определением электролитов. Узнали о физической и химической теории растворов. Рассмотрели в свете теории электролитической диссоциации определение оснований, кислот и солей, а также научились составлять уравнения реакций ионного обмена и узнали об условиях необратимости.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – 14-е изд. – М.: Просвещение, 2012.

2. Попель П.П. Химия: 8 кл.: учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С.Кривля. – К.: ИЦ «Академия», 2008. – 240 с.: ил.

3. Габриелян О.С. Химия. 11 класс. Базовый уровень. 2-е изд., стер. – М.: Дрофа, 2007. – 220 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

1. №№6-8 (с. 48) Рудзитис Г.Е. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – 14-е изд. – М.: Просвещение, 2012.

2. Как доказать, что ионы имеют заряд, если они окрашены?

3. Что обусловливает малиновую окраску марганцовки?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Adblock
detector